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In this work we have obtained exact analytical formulae expressing the wave
resistance of a two-dimensional body by the parameters of the downstream non-
breaking waves. The body moves horizontally at a constant speed c in a channel
of finite depth h. We have analysed the relationships between the parameters of the
upstream flow and the downstream waves. Making use of some results by Keady
& Norbury (J. Fluid Mech., vol. 70, 1975, pp. 663–671) and Benjamin (J. Fluid
Mech., vol. 295, 1995, pp. 337–356), we have rigorously proved that realistic steady
free-surface flows with a positive wave resistance exist only if the upstream flow is
subcritical, i.e. the Froude number Fr= c/

√
gh< 1. For all solutions with downstream

waves obtained by a perturbation of a supercritical upstream uniform flow the wave
resistance is negative. Applying a numerical technique, we have calculated accurate
values of the wave resistance depending on the wavelength, amplitude and mean
depth.
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1. Introduction
In this work we shall consider a two-dimensional body that moves horizontally from

right to left at a constant speed c in a channel of finite depth h. We assume the fluid
to be incompressible and inviscid, the flow to be irrotational. Also, we suppose that
in the body frame of reference the flow is steady. Then the wave train generated by
the body also moves from right to left with the same velocity c. In the body frame of
reference we introduce Cartesian coordinates with the x-axis lying on the bottom of
the channel and the y-axis directed vertically upward. In this coordinate system, far
upstream we have a uniform stream with velocity c and far downstream a train of
steady periodic waves (figure 1).

In spite of the absence of energy dissipation, due to the generation of waves
(momentum losses) the body experiences a wave resistance Rw, by which we mean
the horizontal component of the resultant of the pressure forces on the body. It is to
be noted that in the nonlinear wave theory the wave resistance so defined does not
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FIGURE 1. Sketch of a steady free-surface flow over a body.

always vanish when the wave train far downstream degenerates to a uniform flow
(see e.g. Binder, Vanden-Broek & Dias 2009, p. 187).

In two-dimensional cases the determination of this resistance from properties of the
wave train has been the subject of several investigations. The linear theory was first
presented by Lord Kelvin (1887). He derived that the wave resistance

Rw = 1
4
ρga2

[
1− 4πh/λ

sinh(4πh/λ)

]
, (1.1)

where ρ is the fluid density, g is the acceleration due to gravity, λ is the wavelength
and a= (hc− ht)/2 is the wave amplitude (one half the vertical distance from the crest
to the trough). For deep water this formula simplifies and takes the form

Rw = 1
4ρga2. (1.2)

Wehausen & Laitone (1960, p. 460) by means of an energy balance equation
have derived an exact resistance formula for three-dimensional bodies. In the
two-dimensional case their result is as follows:

Rw = ρ2
∫ η(x)

0
[v2

y − (vx − c)2] dy+ ρg
2
[η(x)− h]2. (1.3)

Here vx(x, y) and vy(x, y) are the components of the velocity vector in the steady flow,
y= η(x) is the equation of the free surface, and the integration is along any vertical
segment located behind the body.

Duncan (1983) was the first to notice that an exact value of wave resistance can be
expressed in terms of some integral far-downstream wave properties. For the infinite
depth case, using the horizontal-momentum equation and some results by Longuet-
Higgins (1975), Duncan (1983) deduced that

Rw = cI + 3V − 4T, (1.4)

where I is the mean impulse:

I = ρ
λ

∫∫
Ωz

(c− vx) dx dy, (1.5)

and V and T are the mean potential and kinetic energies, respectively:

V = ρg
2λ

∫ x+λ

x
[η(x)− ha]2 dx, T = ρ

2λ

∫∫
Ωz

[(vx − c)2 + v2
y ] dx dy. (1.6a,b)
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In (1.5), (1.6) the domain Ωz is one wave period, ha is the height of the mean level
of waves:

ha = 1
λ

∫ x+λ

x
η(ξ) dξ . (1.7)

It is to be noted that the above definitions of I, T , V and ha are valid for finite and
infinite depths, but for infinite depth the location of the x-axes is arbitrary.

Numerical results of Longuet-Higgins (1975) and formula (1.4) allowed Duncan to
obtain accurate values of the wave resistance for arbitrary wave steepness.

Another important result of Duncan (1983) is the formula

Rw = 1
4
ρga2

[
1− 3

2
(2πa)2

λ2

]
, (1.8)

that generalizes (1.2) up to the fourth power of the amplitude a. Equation (1.8) has
been obtained by making use of formula (1.3) given above and the third-order Stokes
wave theory.

Formula (1.4) is correct only for deep water. The main goal of the present work is
to generalize (1.4) for water of finite depth and to obtain numerically accurate values
of Rw for any amplitude and depth. We have established that in the finite depth case

Rw = 3
2ρgδ2

2 + ρ(gh− c2)δ1, (1.9)

where δ1 and δ2 are, respectively, the mean and root-mean-square deviations of the
free-surface shape far downstream from the undisturbed level h:

δ1 = 1
λ

∫ x+λ

x
[η(ξ)− h] dξ, δ2

2 =
1
λ

∫ x+λ

x
[η(ξ)− h]2 dξ . (1.10a,b)

As one can see from (1.9), to compute the wave resistance Rw of a body that moves
with a constant speed c in a channel of depth h one needs only to determine two
parameters δ1 and δ2, which have the dimension of length and depend on the shape
of the free surface in the far field.

The parameter δ1 = ha − h can be treated as a defect of levels (the difference
between the mean level far downstream and the undisturbed level far upstream). The
fact that due to nonlinear effects h 6= ha was noticed by Whitham (1962, p. 142) and
later was numerically confirmed by Salvesen & von Kerczek (1976, p. 168). In this
paper we rigorously prove that, if Rw > 0, then δ1 = ha − h< 0.

To pass to the limit h→∞ in (1.9) we have deduced another representation for Rw,
equivalent to (1.9), namely,

Rw = 3V − 2T + 3
2
ρgδ2

1 −
ρ

2
hσ 2

b , (1.11)

where σb is the root-mean-square velocity at the bottom in the far field:

σ 2
b =

1
λ

∫ x+λ

x
[vx(ξ , 0)− c]2 dξ . (1.12)

It follows from (1.11) that in infinitely deep water

Rw = 3V − 2T, (1.13)
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which is equivalent to Duncan’s result (1.4), because cI = 2T (see Longuet-Higgins
1975, p. 159).

By making use of (1.4) Duncan (1983) has established an important physical limit
for the wave resistance of a body in deep water, namely, he demonstrated that Rw 6
0.02ρc4/g. In this paper we show that in water of finite depth Rw 6 0.0236ρc4/g, and
to achieve the maximum the body should be towed with a speed of c ≈ 0.692

√
gh,

creating waves with an amplitude of 0.189h. Under these conditions the body will
generate waves with wavelength λ≈ 3h and defect of levels δ1 ≈−0.034h.

It is to be noted that the results for the wave resistance obtained in the paper are
correct not only for a body that moves under a free surface, but also for a plate
planing on a water surface without spray formation, for a bump on a horizontal bottom
or for a free-surface flow over a system of concentrated singularities, such as vortices
and doublets. So the results are independent of the type of flow disturbance under the
assumption that on the free surface there are no wavebreaking and sprays. The only
requirement is that the levels of the bottom far upstream and far downstream of the
disturbance are equal.

2. Mathematical formulation of the problem
We denote by ψ(x, y) the stream function of the steady flow; then vx = ∂ψ/∂y,

vy =−(∂ψ/∂x) are the components of the velocity vector. Let

Q= ch,
c2

2
+ gy= R, (2.1a,b)

where Q is the volume flux and R is the Bernoulli constant. If the pressure p is
measured from atmospheric (on the free surface p= 0), then in the entire flow domain
the Bernoulli equation is fulfilled:

1
2
(v2

x + v2
y )+ gy+ p

ρ
= R. (2.2)

The mathematical formulation of the problem is as follows. Find the function η(x)>
0, x∈ (−∞,+∞) and the harmonic stream function ψ(x, y) in the domain 06 y6η(x)
subject to the boundary conditions

ψ =
{

0 on the bottom y= 0,
Q on the free surface y= η(x), (2.3)

1
2(v

2
x + v2

y )+ gy= R on the free surface y= η(x), (2.4)
ψ = const. on the surface of the body, (2.5)
η(x)→ h, ψ(x, y)→ cy as x→−∞. (2.6a,b)

In the boundary condition (2.5) the constant on the right-hand side must be determined
as a part of the solution to the problem.

Let us introduce the upstream Froude number

Fr= c√
gh
. (2.7)

The flow is called subcritical if Fr < 1 and supercritical if Fr > 1. According to the
linear theory (see Lamb 1932, arts. 245–246), if Fr > 1, then the function η(x)→ h
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as x → +∞. Hence, in this case there are no waves far downstream. If Fr = 1,
linearized bounded solutions do not exist. If Fr < 1, then the linear theory predicts
that far downstream a train of periodic waves appears, and the length and amplitude
of the waves depend on the Froude number Fr and the shape of the body.

Thus, according to the linear theory there are only two options for the behaviour of
the linearized solutions at the right infinity: either far downstream we have a uniform
stream or far downstream we have a train of periodic waves. In solving the nonlinear
problem (2.3)–(2.6), it seems to be natural to assume the same. Thus we suppose that
for any solution to the problem (2.3)–(2.6) there exists λ> 0 such that

lim
n→∞

η(x+ nλ)= η∗(x) <∞, lim
n→∞

ψ(x+ nλ, y)=ψ∗(x, y) <∞, n ∈N. (2.8a,b)

It is clear that the functions η∗(x) and ψ∗(x, y) are λ-periodic with respect to x and
satisfy the boundary conditions (2.3) and (2.4), which means that far downstream there
exists a train of periodic waves with wavelength λ. The conditions (2.8) also include
the case of a uniform stream at the right infinity for which

η∗(x)= hd = const., ψ∗(x, y)= cdy, cd = Q
hd
, (2.9a,b)

where hd and cd are the depth and speed of this stream. So, the conditions (2.8) cover
both options mentioned above, but if equalities (2.9) hold, then the value λ>0 in (2.8)
can be arbitrary.

Conditions (2.8), (2.9) can be justified as follows. It is apparent that far downstream
the influence of the disturbing obstruction is negligibly small and the functions η∗(x)
and ψ∗(x, y) must only satisfy the boundary conditions (2.3), (2.4). So far in the
nonlinear wave theory three types of solutions to the problem (2.3), (2.4) are known:
uniform streams, periodic waves (possibly non-symmetric) and solitary waves. But
for the solitary waves the crests are located at infinite distance from the troughs,
under which the flows are uniform. Thus, the far-downstream solitary waves do not
disturb the far-downstream uniform streams behind the obstruction. This means that
for nonlinear problems the conditions (2.8) cover all possibilities.

The formulation of the nonlinear problem (2.3)–(2.6), (2.8) raises an important
question of solvability. Existence theorems for problems of such a type were proved
by Nalimov (1982) (subcritical flow over a small bump on a horizontal bottom) and
by Maklakov (1997) (subcritical flow past a line vortex of small strength).

If a solution to the problem (2.3)–(2.6), (2.8) satisfies (2.9), then we are able to
introduce the downstream Froude number

Frd = cd√
ghd

. (2.10)

We should note that, strictly speaking, in the definitions (1.5)–(1.7), (1.10) and
(1.12) of § 1 we should write the subscript asterisks from the conditions (2.8) for all
functions in the integrands to indicate that the functions are computed at the right
infinity. But as in § 1, in what follows we shall omit these asterisks for the sake of
brevity, replacing them by the words ‘far downstream’, ‘in the far field’, ‘at the right
infinity’ and so on.
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3. Formulae for the wave resistance in water of finite depth
Consider three physical quantities introduced by Benjamin & Lighthill (1954) in

their development of the approximate theory of cnoidal waves. These quantities are
the total head R (the Bernoulli constant, defined by (2.2)), the volume flux

Q=
∫ η(x)

0
vx(x, y) dy, (3.1)

and the flow force

S=
∫ η(x)

0

[
v2

x (x, y)+ p
ρ

]
dy (3.2)

(horizontal momentum flux plus pressure force per unit span, divided by the density).
In formulae (3.1), (3.2) the integration is along a vertical segment lying entirely inside
the fluid.

For the goals of this section the parameter S is of special importance. Indeed, as
follows from the momentum equation, the wave drag Rw = ρ(SMN − SKL), where SMN
and SKL are the parameters S calculated for vertical segments MN and KL located
upstream and downstream of the body, respectively (see figure 1).

Far downstream consider one wave period shown in figure 2. From the Bernoulli
equation (2.2) we find that

S= Rη(x)− 1
2

gη2(x)+ 1
2

∫ η(x)

0
(v2

x − v2
y ) dy, (3.3)

or

S= Rη(x)− 1
2

gη2(x)+ 1
2

Im
∫

KL

(
dw
dz

)2

dz, (3.4)

where w(z)= ϕ + iψ is the complex potential of the wave flow, and dw/dz= vx − ivy
is the complex-conjugate velocity. By virtue of the λ-periodicity of dw/dz we have∫

RS
z
(

dw
dz

)2

dz+
∫

LK
z
(

dw
dz

)2

dz= λ
∫

KL

(
dw
dz

)2

dz. (3.5)

We integrate the analytic function z(dw/dz)2 along the boundaries of the wave period
in the counterclockwise direction and take the imaginary part of the result. Because
on the bottom Im[z(dw/dz)2] = 0, with allowance for (3.5) we get from the Cauchy
theorem

λ Im
∫

KL

(
dw
dz

)2

dz= Im
∫

LS
z
(

dw
dz

)2

dz. (3.6)
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But (
dw
dz

)2

dz= v2e−iθ ds= v2(dx− i dy), (3.7)

where θ is the inclination and v=
√
v2

x + x2
y is the modulus of the velocity vector on

the free surface LS; ds is a line element of LS. Taking into account that v2=2(R−gy),
we infer that

λ Im
∫

KL

(
dw
dz

)2

dz= Im
∫

LS
v2(x+ iy)( dx− i dy)=2

∫
LS
(Ry−gy2) dx−2

∫
LS

x(R−gy) dy.

(3.8)
Integrating the second integral by parts, we obtain

λ Im
∫

KL

(
dw
dz

)2

dz= 2
∫

LS

(
2Ry− 3

2
gy2

)
dx− 2λ

[
Rη(x)− 1

2
gη2(x)

]
. (3.9)

From this equation and (3.4) we deduce a new representation for the flow force

S= 1
λ

∫ x+λ

x

[
2Rη(ξ)− 3

2
gη2(ξ)

]
dξ, (3.10)

in which the integration is not along a vertical segment, as in the initial definition
(3.2) of the flow force S and in formula (1.3) by Wehausen & Laitone (1960), but
along one period of the free surface.

It is to be noted that this change in the line of integration is a key point in deducing
formula (1.9). Indeed, because for the uniform stream η(x)= h, it follows from (3.10)
that SMN = 2hR− (3/2)gh2. But Rw/ρ = SMN − S, hence

Rw

ρ
= 1
λ

∫ x+λ

x

(
2hR− 3

2
gh2 − 2Ry+ 3

2
gy2

)
dx

= 1
λ

∫ x+λ

x

[
3
2

g(y− h)2 − (2R− 3gh)(y− h)
]

dx. (3.11)

Taking into account that 2R= c2 + 2gh, we come to formula (1.9).
To deduce formula (1.11), which leads to Rw = 3V − 2T for deep water, we first

notice that
V = ρg

2
(δ2

2 − δ2
1), (3.12)

where V is the mean wave potential energy, defined by (1.6a) and the lengths δ1 and
δ2 are determined in (1.10). Equations (1.6), (1.9) and (3.12) yield

Rw = 3V + 3
2ρgδ2

1 + ρ(gh− c2)δ1. (3.13)

Now we express the third term in (3.13) by the mean kinetic energy T of the waves
propagating with the speed c of the body. This T , defined by (1.6b), can be written
as

T = ρ

2λ

∫ x+λ

x
dξ
∫ η(x)

0
[(vx − c)2 + v2

y ] dy. (3.14)
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A usual assumption (see e.g. Longuet-Higgins 1975; Cokelet 1977) in the theory
of nonlinear periodic waves is that in the bottom-fixed reference frame the waves
propagate with the velocity ca, equal to the average fluid velocity at any horizontal
level completely within the fluid in the wave-fixed reference frame (in steady flow).
That is

ca = 1
λ

∫ x+λ

x
vx(ξ , y) dξ = C

λ
, (3.15)

where
C= ϕ(x+ λ, y)− ϕ(x, y) (3.16)

is the increment of the potential ϕ in the wave (circulation in the steady motion). As
was noticed by Whitham (1962, p. 142) and later numerically confirmed by Salvesen
& von Kerczek (1976, p. 168), for the waves generated by a moving body due to
nonlinear effects this assumption is not correct, i.e. c 6= ca. Taking into account this
fact, we write

T = ρ
2
(caQ+ c2ha − 2cQ). (3.17)

The simplest way of deriving (3.17) is to use the formula (see Longuet-Higgins 1975,
p. 160) ∫∫

Ωz

(v2
x + v2

y ) dx dy=
∫∫
Ωw

dϕ dψ =CQ, (3.18)

where ϕ and ψ denote the velocity potential and stream function, and Ωw is a domain
of one period in the plane of the complex potential w= ϕ+ iψ . The formula follows
from the equation ∂(φ, ψ)/∂(x, y) = v2

x + v2
y and with allowance for (1.7), (3.1) its

application directly leads to (3.17).
Taking into account that Q= ch, from (3.17) we deduce

2T = ρ(ccah+ c2ha − 2c2h). (3.19)

Let cb be the root-mean-square velocity at the bottom in steady motion:

c2
b =

1
λ

∫ x+λ

x
v2

x (ξ , 0) dξ . (3.20)

It seems that Levi-Civita (1925, p. 277) was the first to notice that in any periodic
steady potential flow the root-mean-square velocities√

1
λ

∫
L
v2 dx (3.21)

along one period L of any streamline are equal. The simplest way to prove this is to
integrate the analytic function (dw/dz)2 along the boundaries of one period between
two streamlines, and after that to use formula (3.7) and the Cauchy theorem. Taking
for these two streamlines the bottom and the free surface, with allowance for the
boundary condition v2 + 2gη(x)= 2R we conclude

c2
b + 2gha = 2R. (3.22)
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In unsteady motion the root-mean-square bottom velocity σb is defined by (1.12). It
follows from the definition (1.12) that σ 2

b = c2
b − 2cca + c2. Since 2R= c2 + 2gh, we

infer that
ρ

2
hσ 2

b = ρh(c2 − gδ1 − cca). (3.23)

Now we sum relations (3.19) and (3.23) to get

2T + ρ
2

hσ 2
b = ρδ1(c2 − gh). (3.24)

Formula (1.11) follows from (3.13) and (3.24).
Consider now the case when the solution to the problem (2.3)–(2.6), (2.8) satisfies

the conditions (2.9), i.e. we have far downstream a uniform flow with velocity cd and
depth hd. For this case formula (1.9) remains correct because in deriving it we have
used only the periodicity of the downstream flow. But now

η(x)= hd, ha = hd, δ1 = hd − h, δ2
2 = δ2

1, (3.25a−d)

and formula (1.9) takes the form

Rw = ρgh2 δ1

h

(
3
2
δ1

h
+ 1− Fr2

)
. (3.26)

It is clear that if δ1=0, then Rw=0. Let us consider the case δ1 6=0, i.e. hd 6=h, cd 6= c.
Because the Bernoulli constant and the flow flux far upstream and far downstream are
the same, we have

ch= cdhd, c2 + 2gh= c2
d + 2ghd. (3.27a,b)

If we denote ~ = hd/h, then δ1/h= ~ − 1. Using (3.26) and (3.27), after some algebra
we obtain the following relationships:

Rw = ρgh2

2
(1− ~)3

1+ ~ , ~ = Fr2

4

(
1+

√
1+ 8

Fr2

)
, Frd = Fr

~3/2
. (3.28a−c)

These relationships or equivalent forms of them have appeared in a number of
papers (see e.g. Binnie 1952; Benjamin & Lighthill 1954; Maklakov 1995; Binder
et al. 2009). As follows from (3.28), if the upstream Froude number Fr < 1, then
~ < 1, Rw > 0 and the downstream Froude number Frd > 1. Such waveless flows,
subcritical far upstream and supercritical far downstream, are called hydraulic falls or
critical free-surface flows. We prefer hydraulic falls because the words ‘critical flows’
are often associated with the case when c=√gh and Fr= 1.

Although hydraulic falls are waveless flows we shall continue to call the resistance
created by them the wave resistance because, firstly, the equation for Rw in (3.28) has
been deduced from the general wave resistance formula (1.9). Secondly, the hydraulic
falls in some range of Froude numbers are the limiting configurations of solutions
with waves far downstream. We shall discuss the passage to this limit in § 6.



On steady non-breaking waves and the wave resistance 299

4. Signs of the wave resistance and upstream flow parameters

Let us assume that in the body-fixed reference frame the waves far downstream are
known. This means that we know the equation of the free surface y= η(x) as well as
all wave parameters, including the total head R and the flow flux Q. To determine the
wave resistance Rw by means of (1.9) we need to find the parameters of the upstream
flow, namely the velocity c and the undisturbed level h. Because far upstream and far
downstream we have the same R and Q the parameters c and h can be found from
the system of equations (2.1), where Q and R are given, c and h are unknown.

Denote by hc and ht the heights of the crests and troughs of the waves and introduce
the function

Su(c, h)= 1
2 h(2c2 + gh), (4.1)

where Su(c, h) is the flow force S for a uniform stream with speed c and depth h.
The system (2.1) has been thoroughly investigated by Keady & Norbury (1975)

and Benjamin (1995). Reformulating some results of these authors in our notation we
come to the following.

PROPOSITION 1. Assume that the waves are periodic, symmetric and stationary;
compute for these waves the parameters Q, R and S. Then the following statements
hold:

(i) The parameters Q and R satisfy the inequality

8R3 > 27g2Q2. (4.2)

Under the condition (4.2) the system (2.1) always has only two positive solutions
c1, h1 and c2, h2. For the first solution c1, h1 the upstream uniform flow is
subcritical, i.e. c2

1< gh1; for the second one c2, h2 it is supercritical, i.e. c2
2> gh2.

The depths h1 and h2 of the subcritical and supercritical conjugate streams satisfy
the inequalities

h2 < ht < h1 < hc. (4.3)

(ii) For the flow force S the following two-sided estimate is valid:

Su(c2, h2) < S< Su(c1, h1). (4.4)

The first statement of this proposition is a dimensional reformulation of
Proposition 1R from Keady & Norbury (1975) and Proposition 2 from Benjamin
(1995). The left inequality in (4.4) was proved by Keady & Norbury (1975,
Proposition 2) and by Benjamin (1995, Proposition 3). The right inequality in
(4.4) was proved by Benjamin (1995, Proposition 4), more than 40 years after the
conjecture that the flow force S satisfies the two-sided inequality (4.4) was put
forward by Benjamin & Lighthill (1954).

COROLLARY TO PROPOSITION 1. Let the waves far downstream of the body satisfy
the conditions of Proposition 1. For the subcritical solution c= c1,h=h1 of the system
(2.1) the line of the undisturbed level y=h=h1 intersects the free surface of the waves
and the wave resistance Rw > 0; for the supercritical solution c= c2, h= h2 the waves
lie above the undisturbed level y= h= h2 and Rw < 0.
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FIGURE 3. Sketch of a free-surface flow with a supercritical upstream Froude number.

The statement of the corollary, concerning the location of the undisturbed levels
with respect to the waves, follows from inequalities (4.3). The statement about the
signs of the wave resistance Rw is a consequence of the two-sided estimate (4.4),
because

Rw = Su(ci, hi)− S, i= 1, 2. (4.5)

We can conclude from the corollary that the steady free-surface flows over any
obstacle which are supercritical far upstream and have a train of periodic steady waves
far downstream are non-realistic, because for all of them Rw < 0 (the wave thrust
instead of wave drag). A characteristic feature of the flows with Rw < 0 is that the
waves far downstream lie above the upstream undisturbed level (see figure 3). It is to
be noted that numerical evidence of existence of such flows was first demonstrated by
Dias & Vanden-Broek (2002, figure 7) for a bump on a horizontal bottom, and further
examples have been computed by Dias & Vanden-Broek (2004, figure 4), Binder et al.
(2009, figure 4), but the question of wave resistance has not been discussed in these
works.

The assertions of Proposition 1 and the above corollary relate to the case when there
exist waves far downstream, i.e. the function η∗(x) in (2.8) is such that η∗(x) 6≡ const.
Now we formulate a proposition which includes the case η∗(x)≡ const. and connects
the sign of the wave resistance with that of the defect of levels δ1 = ha − h or with
the sign of Fr− 1.

PROPOSITION 2. Let the far-downstream waves (if they exist) be symmetric. Then the
solutions to the problem (2.3)–(2.6), (2.8) possess the following properties:

(i) Rw > 0 iff δ1 < 0 or Rw > 0 iff Fr< 1∪ δ1 6= 0;
(ii) Rw < 0 iff δ1 > 0 or Rw < 0 iff Fr> 1∪ δ1 6= 0;

(iii) Rw = 0 iff δ1 = 0;
(iv) if δ1= 0 (or Rw= 0), then there are no waves far downstream and the upstream

and downstream uniform flows are identical, i.e. h= hd, c= cd, Fr= Frd;
(v) if Fr = 1 and a solution exists, then δ1 = 0 and Rw = 0 with all conclusions of

statement (iv).

Proof. The proof is mainly based on the results of the above corollary and the new
identity (3.24) for periodic waves. First, consider the case when there exist waves far
downstream, i.e. η∗(x) 6≡ const. in (2.8). Then in the identity (3.24) the left-hand side
is positive. Hence, its right-hand side

(c2 − gh)δ1 > 0. (4.6)

This means that the values of c2 − gh and δ1 both do not vanish and their signs
coincide. But according to the corollary for the wavelike solutions the wave resistance
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Rw 6=0 and the sign of c2−gh is opposite to that of Rw. This leads to the statements (i)
and (ii) for the solutions with downstream waves.

Now consider the waveless solutions with ~ = hd/h 6= 1. From (3.28a,b) it follows
that Rw 6= 0 and the sign of Rw is opposite to that of δ1 = h(~ − 1) and to that of
Fr− 1. And again we come to the statements (i) and (ii).

Thus, for the waveless solutions with ~ = hd/h 6= 1 and the solutions with
downstream waves we always have Rw 6= 0, δ1 6= 0. Therefore, Rw can vanish only for
the remaining case when the upstream and downstream uniform flows are identical.
For this case, evidently, δ1 = 0 and, as follows from (3.26), the wave resistance
Rw = 0.

The fifth statement follows from the fact that according to Proposition 1 for all
flows with waves far downstream Fr 6= 1. The same is true for all waveless flows
with ~ 6= 1, due to (3.28a,b). The only remaining possibility is ~ = 1, Frd = 1. This
reasoning finalizes the proof of the proposition.

The first statement of Proposition 2 demonstrates that for physically realistic steady
free-surface flows with a positive wave resistance the defect of levels δ1 < 0 always
exists. Now in the chain of inequalities (4.3) of Proposition 1 the mean depth ha can
be included, namely

h2 < ht < ha < h1 < hc. (4.7)

From the first two statements of Proposition 2 we have the following.

COROLLARY TO PROPOSITION 2. Under the conditions of Proposition 2

(i) if δ < 0, then Fr< 1;
(ii) if δ > 0, then Fr> 1.

The converse statements of this corollary are not true because the waveless solutions
with δ= 0, Fr=Frd exist both for Fr< 1 (see Forbes 1982; Maklakov 1995; Holmes
et al. 2013) and Fr> 1 (see Forbes & Schwartz 1982; Vanden-Broek 1987). But the
solutions with δ= 0, Fr< 1 exist only if the parameters of the disturbance are chosen
by a special way.

Let us introduce the dimensionless parameter

p=
√

8R3

27g2Q2
. (4.8)

As follows from (4.2), p>1. The system (2.1) can be transformed to a cubic algebraic
equation with respect to the squared Froude number Fr2 (see Binnie 1952, (2.5)):

(Fr2 + 2)3 − 27p2Fr2 = 0. (4.9)

To deduce (4.9) it is necessary to write (2.1) in an equivalent form:

c2

gh
= Q2

gh3
,

(
c2

gh
+ 2
)3

= 8R3

g3h3
. (4.10a,b)

Dividing the second equation by the first, one gets (4.9).
It is easy to see that under the condition p> 1 (4.9) always has two positive roots:

Fr2< 1 and Fr2> 1. The solutions with Rw< 0 we consider as non-realistic and reject
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them. So, determining the parameters of the upstream flow from the system (2.1), we
always assume that c= c1, h= h1 and, hence, the Froude number Fr= c/

√
gh< 1.

Applying the trigonometric method to (4.9), after a little algebra we find the realistic
root

Fr2 = 6p sin[ 13 arcsin(p−1)] − 2< 1. (4.11)

The second root coincides with the downstream Froude number Frd for hydraulic falls
and can be found from (3.28b,c).

After finding the Froude number Fr we are able to determine the upstream flow
parameters

h= 1
Fr2 + 2

2R
g
, c= Fr

√
gh, (4.12a,b)

which can be non-dimensionalized in any desired manner.

5. Computations of the wave resistance by a numerical method
5.1. Non-dimensionalization

In this paper we shall mainly use two types of dimensionless wave parameters. For
the first type we choose λ,

√
gλ and ρ as the scales for length, velocity and density,

respectively. The dimensionless wave parameters, normalized by this set of scales, we
denote by a bar. For example,

h̄= h
λ
, ā= a

λ
, c̄2 = c2

gλ
, R̄w = Rw

ρgλ2
. (5.1a−d)

For the second type the quantities c2/g, c and ρ are chosen as the scales for length,
velocity and density. The parameters normalized by these scales we denote by a hat:

ĥ= hg
c2
= 1

Fr2
, â= ag

c2
, ĉ2 = 1, R̂w = gRw

ρc4
. (5.2a−d)

The non-dimensionalization by ‘bars’ seems to be natural, but that with ‘hats’ is
sometimes more useful. So, in what follows we shall use both of them and even
sometimes others, as dictated by convenience.

5.2. Numerical method
For steady λ-periodic waves far downstream of an obstruction the harmonic stream
function ψ(x, y) and the function η(x)> 0, which defines the shape of the free surface,
must be λ-periodic with respect to the variable x and satisfy the boundary conditions
(2.3), (2.4). It is well known that the solution to the problem (2.3), (2.4) depends on
two dimensionless parameters. The main requirement for these parameters is that they
should define the wave uniquely, i.e. all dimensionless wave properties are one-valued
functions of these two parameters.

To calculate the wave properties we use the method of self-generating convergent
meshes, suggested by Maklakov (2002). The method allows one to compute waves of
any steepness with accuracy of 10–11 decimal digits.

The technique of free-point predictions, proposed in Maklakov (2002) and based
on the Longuet-Higgins and Fox asymptotic theory for the almost-highest waves (see
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Longuet-Higgins & Fox 1977, 1978, 1996), permits one also to determine the limiting
wave properties with the same accuracy, without computing directly the highest waves.

In Maklakov (2002) to specify a wave, the parameters

r0 = exp
(
−2πQ
λca

)
and A= log

vt

vc
(5.3a,b)

have been chosen. Here vc is the velocity at the crest and vt is that at the trough of
the waves in the wave-fixed frame of reference. The first parameter r0 is responsible
for the wave depth-to-length ratio and ranges between 0 and 1. For waves of infinite
depth r0= 0, for solitary waves r0= 1. This parameter has been used in a number of
works devoted to the nonlinear wave theory (see e.g. Schwartz 1974; Cokelet 1977).

The second parameter A is responsible for the wave steepness and varies from zero
to +∞. When A=+∞, the wave is of limiting height with a 120◦ angular crest. The
values of A close to zero correspond to infinitesimal waves. We should note that for
infinitesimal waves 2πha/λ=−log r0.

The high accuracy of the algorithm from Maklakov (2002) is due to the advantage
of using non-uniform meshes with the location of nodes uniquely defined by
the parameters r0, A and the iteration process of self-generation. In all further
computations the number of nodes distributed along a half-wavelength is taken to be
equal to 2000.

After some small modification of the algorithm we are able now to specify waves
by using instead of r0 a more natural parameter h̄a= ha/λ (the ratio of the mean depth
to wavelength). With the modified version we are able to calculate wave properties in
the range 0.017 6 h̄a 6 1000 for any A > 0 including A =∞. The value h̄a = 0.017
corresponds to almost solitary waves; h̄a = 1000 corresponds to waves on deep water.

For A > 5 the asymptotic formulae of Longuet-Higgins and Fox have been used
(see Longuet-Higgins & Fox 1977, 1978, 1996; Maklakov 2002). According to these
formulae, for any fixed h̄a or r0 with increase of A the basic wave properties (for
example, the potential and kinetic energies V and T , impulse I, phase velocity ca)
oscillate according to the law

ω=ω∗ + aωe−3A cos(kA− bω)+O(e−5A), (5.4)

where ω is a certain wave property, ω∗ is its limit for the highest wave (in what
follows we shall denote this limit by a superscript asterisk), and k = 2.14291 . . . is
the root of the equation

kπ
6

tanh
kπ
6
= π

2
√

3
, (5.5)

the parameters of oscillations ω∗, aω and bω being dependent on h̄a or r0.
The only exclusion from the law (5.4) is the wave steepness H̄ = (hc − ht)/λ for

which the asymptotic behaviour for A� 1 is

H̄ = (1− e−2A)[H̄∗ + aH̄e−3A cos(kA− bH̄)] +O(e−5A). (5.6)

As was demonstrated in Maklakov (2002), the asymptotic formulae for A> 5 give the
wave properties with accuracy of 10–11 decimal digits, because the errors of (5.4),
(5.6) are of order exp(−5A).
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FIGURE 4. The function H̄∗(h̄a): solid line, our computations and formula (5.8); points,
the computations of Williams (1981).

5.3. Wave resistance as a function of geometric wave properties

Let us label a wave by specifying two geometrical parameters. The first parameter h̄a,
the ratio of mean depth to wavelength, varies from zero (the solitary wave) to infinity
(the deep-water wave). The second parameter, the wave steepness H̄= 2ā, varies from
zero (the infinitesimal wave) to a limiting value H̄∗ dependent on the first parameter.
So,

0 6 H̄ 6 H̄∗(h̄a). (5.7)

But for a given h̄a we are able to compute accurately the limiting value H∗(h̄a), which
makes it possible to normalize H̄ by introducing the parameter ϑ = H̄/H̄∗, which
changes in the range from zero to unity.

For finding the limiting values H̄∗(h̄a) we present an approximate analytical formula,
obtained by fitting our numerical data:

H̄∗ = 0.1326631τ − 0.04341160τ 2 + 0.09371880τ 3

− 0.1986792τ 4 + 0.5907961τ 5 − 1.0248671τ 6

+ 0.9749535τ 7 − 0.4831190τ 8 + 0.09900890τ 9, τ = tanh(2πh̄a). (5.8)

For h̄a > 0.017 the relative error of (5.8) is not more than 0.0004 %, and its absolute
error is not more than 0.00002 %. So, formula (5.8) must give an error of not more
than two unities in the seventh decimal place, which is comparable with the accuracy
of an exact analytical solution. The graph of the function H̄∗(h̄a) is shown in figure 4.
The points on this graph are the data from the paper by Williams (1981, Table 7).

The wave resistance Rw can be normalized in different ways. We have computed
four wave resistance coefficients:

R̄w = Rw

ρgλ2
,

R̄w

h̄2
a

= Rw

ρgh2
a

, R̂w = gRw

ρc4
,

R̄w

h̄2
= Rw

ρgh2
. (5.9a−d)

The graphs of these coefficients as functions of ϑ for different mean depth to
wavelength ratio h̄a are shown in figure 5. The dashed lines in the figure are plotted
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FIGURE 5. Graphs of four wave resistance coefficients as functions of the normalized
wave steepness ϑ for different dimensionless mean wave depths h̄a: dashed lines, h̄a =
1000; bold dot-dashed lines, h̄a = 0.017; 1–7, h̄a = 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1.0.

for h̄a= 1000 (infinite depth case), the bold dot-dashed lines are plotted for ha= 0.017
(almost solitary wave case). All the graphs have been constructed parametrically by
varying A from zero to 7.5 at fixed h̄a.

It is worthwhile noting that the coefficients R̄w, R̄w/h̄2
a and R̄w/h̄2 have a specific

deficiency, namely, they tend to zero as either h̄a→∞ or h̄a→ 0. For example, R̄w

is less than 5× 10−6 at h̄a= 0.017 for all ϑ . This is not the case for R̂w= gRw/(ρc4),
but as one can see in figure 5(c) for this coefficient we have the most complicated
positional relationships between graphs.

Duncan (1983) established that for deep water the maximum wave resistance of
a two-dimensional body is 0.02ρc4/g. The dashed line in figure 5(c) confirms this
conclusion, but as one can see there exist other lines in figure 5(c) which lie higher
than the dashed one. This means that for water of finite depth the maximum wave
resistance must be greater than 0.02ρc4/g. We have found the maximum for the wave
resistance coefficient R̂w by solving the maximization problem

R̂w(h̄a, A)→max, 0.017 6 h̄a 6 1000, 0 6 A<∞. (5.10a−c)

The results are shown in table 1, and as follows from the table, Rw 6 0.0236268ρc4/g
which improves the estimate of Duncan (1983). Table 1 presents also some properties
of the waves which create the maximum wave resistance. If we choose as the basic
parameter the depth h of the upstream level, then to have the maximum resistance
the body should be towed with a speed of c ≈ 0.692

√
gh, creating a wave with

an amplitude of 0.189h. At these conditions the body will generate waves with
wavelength λ≈ 3h and defect of levels δ1 ≈−0.034h.
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FIGURE 6. Graphs of the parameters δ̂1 = δ1g/c2, δ̂2 = δ2g/c2, Fr and c2
a/c

2 as functions
of ϑ for different h̄a: dashed lines, h̄a = 1000; bold dot-dashed lines, h̄a = 0.017; 1–7,
h̄a = 0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1.0.

Coef. Maximum h̄a ϑ H̄ h̄ Fr a/h δ1/h

gRw/(ρc4) 0.0236268 0.321641 0.934895 0.125915 0.332967 0.691985 0.18908 −0.0340165

TABLE 1. Maximum wave resistance coefficient R̂w = gRw/(ρc4) and the corresponding
wave properties.

As one can see in figure 5(b,d), at the same ϑ the values of the wave resistance
R̄w/h̄2

a are almost twice those of R̄w/h̄2. The reason is just in the defect of levels δ1=
ha − h< 0. To elucidate the intricate location of the graphs in figure 5(c) and to see
explicitly how this defect can be large, consider formula (1.9) for the waves resistance.
Its dimensionless analogue is

R̂w = gRw

ρc4
= 3

2
δ̂2

2 +
(

1
Fr2
− 1
)
δ̂1. (5.11)

So, R̂w depends on three parameters: the dimensionless defect of levels, δ̂1= δ1g/c2,
the dimensionless root-mean-square deviation of the free-surface shape far downstream
from the undisturbed level, δ̂2 = δ2g/c2 and the Froude number, Fr. The graphs of
these three parameters as functions of ϑ for different h̄a are shown in figure 6(a–c).
All three plots demonstrate a similar behaviour: the parameters monotonically increase
as h̄a decreases. Moreover, for shallow waves they achieve significant values which are
several tens of times greater than R̂w, but the summation of two terms of different
signs in (5.11) leads to rather small values of R̂w and the intricate location of the
graphs in figure 5(c).
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FIGURE 7. Reconstruction of all graphs of figure 5(c), which allows one to see the
oscillations: dashed line, h̄a = 1000; bold dot-dashed line, h̄a = 0.017; 1–7, h̄a =
0.05, 0.1, 0.15, 0.2, 0.3, 0.5, 1.0. The dashed line almost coincides with lines 6,7.
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FIGURE 8. A free-surface flow close to a hydraulic fall.

In figure 6(d) we show the ratio of the squared velocity ca, defined by (3.15), to
the squared speed of the body c. As has been already mentioned in § 3 the velocity
ca is usually assumed to be the velocity of travelling waves propagating above an
immobile bottom (Longuet-Higgins 1975; Cokelet 1977). For shallow waves the ratio
again achieves significant values and always ca > c.

In closing this subsection it should be noted that all graphs in figures 5, 6 oscillate
as ϑ→ 1, i.e. the graphs have an infinite set of maxima and minima in the vicinity of
ϑ = 1. To see these oscillations, the graphs should be reconstructed. Indeed, according
to the laws (5.4), (5.6) the oscillation will be seen if we put along the abscissa axis
the values −log(1−ϑ) and along the ordinate axis the values [ω−ω∗(h̄a)](1−ϑ)−3/2,
where ω is an oscillating wave property. As an example we have reconstructed in this
way all graphs of figure 5(c). The results are shown in figure 7, and as one can see
the graphs demonstrate more regular behaviour than those of 5(c).

6. Further analysis of the results and discussion
6.1. On the passage of steady free-surface flows with downstream waves to the limit

of hydraulic falls
Miles (1986), Naghdi & Vongsarnpigoon (1986) and Shen & Shen (1990), by means
of different but similar shallow-water theories, established that for subcritical streams
the train of cnoidal waves behind an obstruction for some relationships between
the parameters defining the flow can degenerate to a so-called hydraulic fall, i.e. a
waveless flow which is subcritical upstream and supercritical downstream. A schematic
of the flow close to a hydraulic fall is shown in figure 8.

Forbes (1988), by making use of a boundary-integral technique for satisfying exactly
nonlinear boundary conditions on the free surface, computed numerically hydraulic
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falls over a semi-circular obstruction. He demonstrated that for a semi-circle of any
radius less than the depth of the channel a hydraulic fall solution can be obtained
by choosing the velocity of the incident flow, and so choosing the upstream Froude
number Fr < 1. Dias & Vanden-Broek (1989) came to the same conclusion for a
triangular obstacle.

In studying subcritical free-surface flows over a semi-circular obstruction, Forbes &
Schwartz (1982) conjectured that:

(i) solutions possessing waves might also be possible in the approximate interval of
the Froude numbers 1< Fr< 1.3; and

(ii) as Fr increased, the wavelength of the downstream waves would increase,
ultimately giving a downstream solitary wave at about Fr≈ 1.3.

The second part of this conjecture is correct in the sense that with increase of
the upstream Froude number Fr the downstream wave train can degenerate to a
downstream solitary wave (see figure 8), but is not correct concerning Fr≈ 1.3. It is
to be noted that Forbes (1988), on the basis of the results by Vanden-Broek (1987),
had already doubted the validity of the above conjecture.

Maklakov (1995), investigating the flow over a line vortex by an integral equation
method, has numerically proved that the downstream steady wave train can degenerate
to a solitary wave in the range of the upstream Froude numbers of approximately
[0.761, 1). This result is not in contradiction to that of § 4, where we have rigorously
proved that the realistic (with Rw > 0) steady free-surface flows over any obstruction
are subcritical, but is in contradiction with the first part of the conjecture by Forbes
& Schwartz (1982), which seemed to be based on the fact that for solitary waves the
Froude number is approximately in the range 1< Fr< 1.3.

The explanation of the contradiction is rather simple: here we are talking about
different Froude numbers. Indeed, consider a body, for instance a bump on the
bottom, that generates a wave train of very long waves, as shown in figure 8.
The left side of this flow is just a hydraulic fall. The upstream Froude number
Fr = c/

√
gh = c1/

√
gh1 < 1 is one of two real roots of equation (4.9), and c = c1

and h = h1 is a subcritical solution to system (2.1) (see Proposition 1 of § 4). The
supercritical solution of the system (2.1) is c= c2 and h= h2. But for hydraulic falls
c2= cd and h2= hd, and therefore, the downstream Froude number Frd = cd/

√
ghd > 1

is the second real root of equation (4.9).
So, Fr = c/

√
gh is an upstream definition of the Froude number Fr for a

downstream solitary wave. A usual definition of the Froude number for solitary
waves is Frd = cd/

√
ghd, and this definition is connected with that of the upstream

Froude number Fr by (3.28b,c). If we put in these equations the bounds of the
interval [0.761, 1), we get the interval (1, 1.294]. It is important to note that for
solitary waves the maximum Froude number is

√
1.67498 = 1.29421 (see Tanaka

1986, table 2). So, the approximate value 1.294 is in good agreement with that of
Tanaka (1986).

In the next subsection we refine the range of the upstream Froude number in which
the train of non-breaking long waves can degenerate to a solitary wave. Now we
should notice that the range 0.761 6 Fr < 1 is in contradiction with the experiments
for hydraulic falls carried out by Forbes (1988). In these experiments ~ ranges
approximately from 0.05 to 0.45 (see Forbes 1988, figure 5). For hydraulic falls, as
follows from (3.28b),

Fr2 = 2~2

~ + 1
. (6.1)
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FIGURE 9. The graph of the function Frl(r0).

Then, we infer from (3.28b,c), (6.1) that in the experiments the upstream and
downstream Froude numbers are in the ranges of 0.07 6 Fr 6 0.53 and of
1.75 6 Frd 6 6.12, respectively. But in the latter interval steady non-breaking solitary
waves simply do not exist.

It is worth noting that in the experiments by Forbes (1988) as well as in the
analogous experiments by Sivakumaran, Tingsanchali & Hosking (1983) the levels h
and hd were not fixed, but measured, depending on the volume discharge Q which
could be varied. Apparently, in the experiments the steady hydraulic falls were
obtained by the process of self-stabilization of initially unsteady flows. Possibly,
this self-stabilization takes place only if the volume discharge Q is small enough,
and the corresponding Froude number Fr < Frcrit < 0.761. This reasoning poses an
interesting question of finding a theoretical value of Frcrit by investigating the stability
of hydraulic falls.

6.2. Analytical representation of the maximum wave resistance coefficient for trains
of long waves

In this subsection we return to the method of specifying waves by the parameters r0
and A with a small difference, namely, instead of r0 we choose

Frl =
√

tanh(log r0)

log r0
=
√
− 1

log r0

1− r2
0

1+ r2
0
. (6.2)

As well as r0, the parameter Frl also changes from zero to unity, and again zero
corresponds to infinite depth waves, and unity corresponds to solitary waves. The
convenience of Frl is that for infinitesimal waves Frl = Fr, where Fr is the Froude
number. So, the deviation of Fr from Frl shows the influence of nonlinear effects. At
a given Frl ∈ [0, 1] (6.2) is a nonlinear equation with respect to r0 which always has
a unique solution that has to be found numerically. The graph of the function Frl(r0)

is plotted in figure 9.
In figure 10 the solid lines demonstrate the parametric relationships between the

wave resistance coefficient gRw/(ρc4)= R̂w(A) and the Froude number Fr(A) at fixed
Frl = const. The parameters A and Frl vary within the ranges

0 6 A 6 7.5, 0.01 6 Frl 6 Frl max = 0.9981563392408. (6.3a,b)
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FIGURE 10. Solid lines are the parametric relationships between the wave resistance
coefficient gRw/(ρc4) = R̂w(A) and the Froude number Fr(A) for fixed Frl = const. The
left-hand line is at Frl = 0.01, the right-hand line is at Frl = Frl max = 0.9981563392408
(r0 = 0.9). The dashed line is an envelope of the solid lines.
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FIGURE 11. The dependence Fr = Frs(A) for solitary waves (r0 = 0.9) between the
upstream Froude number Fr and the parameter A.

The value A = 7.5 corresponds to almost highest waves, the value Frl = Frl max

corresponds to almost solitary waves. The dashed line shows the maxima of the wave
drag coefficients R̂w for fixed Froude numbers Fr 6Frs min= 0.760706. This curve has
an explicit maximum as already mentioned in table 1.

In figure 10 the dashed line intersects the right-hand solid line at a point P whose
abscissa is Frs min. The accurate value Frs min = 0.760706 has been determined by
finding a minimum of the function Fr = Frs(A), that is the dependence between
the upstream Froude number Fr and the parameter A at Frl = Frl max. The value
Frl = Frl max = 0.9981563392408 exactly corresponds to r0 = 0.9 in (6.2). As was
noticed in Maklakov (2002, p. 88) the long waves at r0= 0.9 have an almost uniform
velocity distribution under the trough and approximate the properties of solitary
waves up to 11 decimal places of precision. So, the function Fr = Frs(A) represents
the dependence between the Froude number Fr and the parameter A for solitary
waves. The graph of this function is shown in figure 11.
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A 0.2 0.4 0.8 1
Fr (Numerically) 0.91330000264 0.85097287619 0.78338825750 0.76935794464
R̂w (Numerically) 0.00054710327158 0.0036480390819 0.015421487375 0.019964720020
R̂w Formula (6.6) 0.00054710327193 0.0036480390822 0.015421487376 0.019964720020

TABLE 2. Comparison of numerical computations of the wave resistance coefficient R̂w
with the analytical formula (6.6).

The function Fr = Frs(A) oscillates by the law (5.4), and according to our
calculations the parameters of oscillations are as follows:

Frs(A)= Fr∗s + 0.3471e−3A cos(kA− 1.0428), Fr∗s = 0.7629045094, (6.4a,b)

where Fr∗s = Frs(∞) is the upstream Froude number for the highest solitary wave.
If we put this Fr∗s in (3.28b,c), we get Frd = 1.2908904559, which is in excellent
agreement with the value 1.2908904558, obtained by Maklakov (1995) for the Froude
number of the solitary wave of maximum height.

Thus, in figure 10 the dashed line (0 < Fr 6 Frs min) shows the maximum wave
resistance coefficients R̂w at fixed Froude numbers Fr, and these maxima are created
by waves of finite length. The right-hand solid line of the figure (Frs min 6Fr< 1) does
the same, but the maxima are created by solitary waves.

The right-hand solid line in figure 10 is of special interest, because, on the one
hand, it shows the dependence between Fr and R̂w max, and on the other hand, this
dependence is for hydraulic falls (wavelengths λ→∞). But as λ→∞ the function
Rw(Fr) can be found analytically from (3.28a,b). Taking into account (3.28a,b), after
a little algebra we arrive at the formula

Rw max = ρgh2 D(Fr), D(Fr)= 1
2 [1+ 5

2 Fr2 − 1
8 Fr4 − 1

8 Fr(8+ Fr2)3/2], (6.5a,b)

which exactly coincides with that derived by Benjamin & Lighthill (1954, p. 455) for
the maximum wave resistance of long waves. Thus, the formula

R̂w max = 1
Fr4

D(Fr) (6.6)

expresses analytically the maximum wave resistance coefficient R̂w in the range of the
Froude numbers

0.760706 6 Fr< 1 (6.7)

for steady non-breaking waves, generated by a body or a bump on the bottom. At the
same time this formula expresses the resistance coefficient R̂w for hydraulic falls in a
wider range, namely, Fr ∈ (0, 1).

By means of (6.6) we can check our assertion that the waves at Frl = Frl max
approximate the properties of solitary waves up to 11 decimal places of precision. We
have chosen several values of A, then we have calculated numerically at Frl = Frl max

the corresponding values of Fr and R̂w, and inserting the obtained Fr into (6.6), we
have found R̂w analytically. The results are in table 2 and they confirm the assertion.

The value Frmin = 0.760706 is a minimum upstream Froude number at which a
downstream solitary wave exists. So the passage of steady non-breaking waves to the
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limit of hydraulic falls is only possible in the range (6.7). The corresponding range
of downstream Froude numbers obtained by means of (3.28b,c) is

1< Frd 6 1.29421, (6.8)

which again is in a full agreement with the computations by Tanaka (1986, table 2).

6.3. Wave resistance in deep water
As already mentioned in the introduction to the paper, our formula (1.13) for the wave
resistance in deep water follows from formula (1.4) of Duncan (1983). Besides (1.4),
Duncan has deduced two more analytical formulae, which express the wave resistance
coefficients R̄w and R̂w in terms of the wave amplitude:

(2π)2R̄w = (2π)2Rw

ρgλ2
= 1

4
α2 − 3

8
α4, R̂w = gRw

ρc4
= 1

4
α2 − 7

8
α4, α = 2πa

λ
=πH̄.

(6.9a−c)
Formulae (6.9), which have been obtained by making use of the third-order Stokes
wave theory, contain terms up to the fourth order in a. By means of (1.13) we are
able to extend the Duncan results up to the eighth order in a. Indeed, Longuet-Higgins
(1975) on the basis of the results of Schwartz (1974) established that

(2π)2T
ρgλ2

= 1
4
α2 − 19

48
α6 − 3317

2880
α8,

(2π)2V
ρgλ2

= 1
4
α2 − 1

8
α4 − 19

48
α6 − 3077

2880
α8,

(6.10a,b)
2πc2

gλ
= 1+ α2 + 1

2
α4 + 1

4
α6 − 22

45
α8. (6.11)

Using Rw = 3V − 2T and taking into account that R̂w = R̄w/c̄4, we get

(2π)2R̄w = α
2

4
− 3α4

8
− 19α6

48
− 2597α8

2880
, R̂w = α

2

4
− 7α4

8
+ 41α6

48
− 3557α8

2880
.

(6.12a,b)
In figure 12 the graphs of the wave resistance coefficients R̄w and R̂w as functions

of the wave steepness H̄ = H/λ= 2a/λ are shown. The graphs demonstrate that the
increase of the number of terms in the expansions for the coefficients leads to a rather
significant improvement of accuracy.

7. Conclusions
The wave resistance is an important parameter of free-surface flows, which is

difficult to compute, especially for nonlinear problems. A standard method of finding
it by integrating the pressure distribution along a body surface can lead to rather
unexpected results. The problem is that this parameter is small and due to numerical
errors it is easy to get, for example, a wave thrust instead of drag. In § 3 of this paper
we have deduced formula (1.9), which seems to be more effective than the standard
integration. Indeed, the formula contains only two unknown geometric parameters
δ1 and δ2, which are, respectively, the mean and root-mean-square deviations of the
free-surface shape far downstream from the undisturbed level. In solving free-surface
problems by any method, accurate or approximate, analytical or numerical, finding
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FIGURE 12. Wave resistance coefficients R̄w and R̂w as functions of the wave steepness
H̄ = H/λ for deep water: solid lines, accurate numerical calculations; dashed lines,
formulae (6.12); dotted lines, formulae (6.9).

the free-surface shape is a necessary element, but with knowledge of this element the
parameters δ1 and δ2 can be easily computed, and hence the wave resistance will be
found.

In § 4 we have analysed the relationships between the parameters of the upstream
flow and the downstream waves. Here the results by Keady & Norbury (1975) and
Benjamin (1995) have turned out to be very helpful. Making use of some of their
results, we have rigorously proved that realistic steady free-surface flows with a
positive wave resistance exist only if the upstream flow is subcritical, i.e. the Froude
number Fr = c/

√
gh < 1. For all solutions with downstream waves obtained by a

perturbation of a supercritical upstream uniform flow the wave resistance is negative.
In that section we have also deduced explicit analytical formulae, which express the
parameters of the upstream flow in terms of those of the downstream waves.

In fact, in §§ 3 and 4 we have introduced some new useful physical properties
inherent to a system of steady periodic waves. Among them the most important are
the speed c and depth h of a uniform stream which without dissipation is able to
create this system due to some disturbance located in the stream. For example, by
using (4.11) we are able to calculate the Froude number for any system of periodic
steady waves which can be generated by a moving body. Most interesting is that this
Froude number is always less than unity, including the case of solitary waves (else
the wave resistance will be negative), which, generally, confirms the conclusions of
the linear wave theory. In the set of these useful properties the wave resistance, of
course, is included.

Section 5 was devoted to numerical computations. By the method of Maklakov
(2002) we have calculated accurate values of the wave resistance depending on the
wavelength, amplitude and average depth. So, we demonstrate that the wave resistance
is a function of geometric wave properties.

In § 6 we have investigated the possibility of the passage of free-surface flows with
downstream non-breaking waves to the limit of hydraulic falls. We have demonstrated
that this passage is only possible if the upstream Froude number Fr is in the range
0.760706 6 Fr< 1.

Nonlinear steady periodic waves, as well as free-surface flows over any obstruction,
can be computed by any method, accurate or approximate, analytical or numerical.
So far we have determined the wave resistance by the parameters of generated waves
only numerically. But the above investigations make it possible to deduce analytical
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formulae which connect the wave resistance with the amplitude and depth of the
waves. This can be done, for example, by the Stokes method. In particular, in the
last subsection of § 6 we have demonstrated such a possibility for the waves in deep
water, where formulae (1.2) by Kelvin (1887) and (1.8) by Duncan (1983) have been
extended up to the eighth order in wave amplitude. Obtaining analogous results for
waves on water of finite depth will be a subject of our further investigations.
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