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SUMMARY

In this paper, we consider edge-based reconstruction (EBR) schemes for solving the Euler equations on
unstructured tetrahedral meshes. These schemes are based on a high-accuracy quasi-1D reconstruction of
variables on an extended stencil along the edge-based direction. For an arbitrary tetrahedral mesh, the
EBR schemes provide higher accuracy in comparison with most second-order schemes at rather low
computational costs. The EBR schemes are built in the framework of vertex-centered formulation for the
point-wise values of variables.

Here, we prove the high accuracy of EBR schemes for uniform grid-like meshes, introduce an economical
implementation of quasi-one-dimensional reconstruction and the resulting new scheme of EBR family, esti-
mate the computational costs, and give new verification results. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

High accuracy of numerical simulations in aerodynamics and, especially, aeroacoustics has become
an indispensable requirement opening the door to industrial applications. The quality of computa-
tions is primarily determined by the accuracy of the numerical scheme in use. In the case of unstruc-
tured meshes well suitable for the problems with complex multi-body configurations and realistic
shapes, the scheme accuracy is still a challenging problem. Attacking it, one should always take into
account an appropriate balance between the accuracy and its price in terms of computational costs.
The desire to reach the high accuracy required in engineering has promoted the currently

observed progress in the development of very high-order (HO) methods such as finite-volume (FV)
polynomial-based Weighted Essentially Non-Oscillatory (WENO), discontinuous Galerkin (DG),
and spectral schemes. For smooth solutions, the very HO schemes provide extremely accurate results,
for instance, in comparison with Godunov-type schemes of the second order, and undoubtedly are the
leaders. However, there are three serious factors that restrict their wide implementation in real aerody-
namics and aeroacoustics problems.
First, the meshes for the real applications are inevitably coarse, and the absolute accuracy on

such meshes is more important than the order of accuracy, which is evaluated asymptotically. In
practice, the absolute errors provided by the very high-order schemes can be comparable with or
even exceed the errors of some lower-order schemes on coarse meshes. In the paper, it is shown
for the test cases.
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Second, the desired high accuracy should be balanced with the computational costs needed to
reach it. At the current stage, the high cost of the very HO schemes prevents their wide use in
solving real-life problems.
Third, for the problems with non-smooth solutions (which are typical for real applications), the

development of shock-capturing techniques compatible with the very HO methods still presents a
serious difficulty.
In the class of k-exact FV methods possessing very high orders on smooth solutions, the high

gradients and discontinuities are mainly supported by introducing the WENO technology. Being
firstly proposed as a finite-difference method for Cartesian grids [1, 2], the WENO scheme has been
extended to FV approach and unstructured meshes [3, 4]. Further developments of WENO scheme
are given, for instance, in [5–8]. In spite of the impressive results presented there, the FV WENO
scheme for unstructured meshes remains too heavy to be widely used in engineering, mostly,
because of the computationally expensive procedure of multiple calculations of three-dimensional
(3D) polynomial coefficients.
According to many discussions on DG schemes (in particular [9–12]), limiters also remain the

bottleneck. A difficulty of the rapidly developing spectral methods that are close in a sense to the
DG schemes and produce very accurate results for smooth solutions is the elaborate construction of
artificial viscosity [13–16]. Resuming, we can say that the development of a scheme providing a stable
behavior on discontinuities and a very high accuracy in smooth zones still presents a crucial problem in
computational fluid dynamics. As a possible improvement, in [17–20], the authors have proposed a
local switching from DG to WENO in the regions of discontinuities. A reverse side of this hybrid
approach is the necessity to have a fine and robust indicator (monitor) for such switching.
Thus, to develop a scheme suitable for real applications, we need to look for a compromise

between high accuracy, robust shock capturing, and the corresponding computational costs.
From this standpoint, some vertex-centered schemes for unstructured meshes can be of special in-

terest. The flux corrector (FC) scheme [21] proposed in 2011 by A.Katz and V.Sankaran presents a
new result in this direction. This scheme possesses the second order of approximation in the point-wise
sense for arbitrary unstructured meshes. The main feature of this scheme is the third order of accuracy
for steady problems. At the same time, for unsteady problems it exhibits the second order of accuracy
even on uniform meshes. Thanks to its robustness and rather low computational costs the FC scheme
has been promptly extended to convection-diffusion problems [22] and the Navier–Stokes equations
[23–25]. Some authors have proposed modifications of FC scheme which do provide the third order
of accuracy for unsteady problems (see, in particular, [24]), however these modifications lead to sig-
nificant complication of the algorithm and the loss of its conservation property. The papers [26, 27]
have presented the techniques of strand meshes when using the FC on unstructured mesh on
surfaces tangent to the walls and switching to a high-order finite-difference scheme in the normal
direction. Such approach allows one to better treat strong anisotropic curvilinear boundary layers.
The present paper considers another family of vertex-centered schemes, namely, EBR (edge-

based reconstruction) schemes, based on a quasi-one-dimensional (1D) edge-oriented reconstruc-
tion of variables.‡ This idea was firstly proposed in the 1990s [28, 29] and then has been developed
(for instance [30–32]) as an efficient algorithm providing higher accuracy on unstructured meshes
for point-wise values.
Here, we present an interpretation of the EBR schemes in terms of finite differences for irregular

meshes. We introduce a concept of translationally symmetric meshes that are uniform grid-like
meshes and prove a high accuracy of the EBR schemes for this family of meshes. We show that
the underlying high-accuracy scheme for Cartesian meshes keeps its high accuracy for linearly
deformed meshes under the EBR approach.
We propose a new efficient implementation of quasi-1D reconstruction techniques and thereby

present the new SEBR (simplified EBR) scheme of EBR family optimal in terms of computational

‡

Here, under the EBR family, we mean all the possible schemes based on the idea of quasi-1D reconstruction of vari-
ables. A particular scheme is thus determined by the Riemann solver, the type of reconstructed variables (for instance,
physical or flux variables), and, mainly, by the choice of unstructured edge-oriented stencil for the approximation of
fluxes. In particular, two schemes of this family, namely, NLV6 and LV6 schemes are presented in [32]. The FC
scheme [21] with a special approximation of nodal gradients can be also considered as an EBR scheme.
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costs. We estimate the computational costs of different EBR schemes in comparison with the
quadratic-polynomial-based FV method and the FC scheme.
Finally, we give new verification results for the two-dimensional (2D) Rankine vortex and 3D

Gaussian pulse and show the examples of problems solved by the EBR schemes.
Note that, in this paper, we consider only smooth solutions. Because of the limitations on the

volume of the paper, we do not discuss here results for shocks. We have developed a WENO-based
extension of EBR schemes to discontinuities, which will be presented in detail in the forthcoming
paper.

2. BASIC 1D HIGH ACCURACY SCHEME

2.1. Scheme for the linear transport equation on uniform meshes

Let us consider the linear transport equation

∂u
∂t

þ a
∂u
∂x

¼ 0; a > 0: (1)

According to the method of lines, the semi-discrete approximation of Equation (1) can be written
as the ordinary differential equation (ODE)

du

dt

� �
j

¼ �Ψj uð Þ;

where the function Ψj uð Þ ¼ a ∂u
∂x

� �L
j
is an approximation of the space derivative. Superscript L denotes

the upwind approximation of the gradient using the stencil skewed to the left.
Let us now introduce the uniform mesh with nodes xj and the constant mesh step Δx= xj + 1� xj

for all j. The computational cell for the node j is defined as the segment with the boundaries
xj ∓ 1/2 = xj∓Δx/2. The unknown function is defined in the mesh nodes: uj=u(xj).
We approximate the space derivative as

Ψj uð Þ ¼ a
�2uj�3 þ 15uj�2 � 60uj�1 þ 20uj þ 30ujþ1 � 3ujþ2

60Δx
: (2)

Using the Taylor expansion, one can see that formula (2) provides the fifth order of accuracy.
Approximation (2) can be also presented in the divergent form

Ψj uð Þ ¼ a
uLjþ1=2 � uLj�1=2

Δx
(3a)

with the reconstructed values of unknown function u at the interface points xj ± 1/2 written in terms of
first finite differences:

uLjþ1=2 ¼ uj þ 1
2

� 1
15

Δuj�3=2 þ 11
30

Δuj�1=2 þ 4
5
Δujþ1=2 � 1

10
Δujþ3=2

� �
uLj�1=2 ¼ uj�1 þ 1

2
� 1
15

Δuj�5=2 þ 11
30

Δuj�3=2 þ 4
5
Δuj�1=2 � 1

10
Δujþ1=2

� � (3b)

where Δuk + 1/2 = uk + 1� uk.
If the advection velocity is negative, that is, a<0, the corresponding fifth-order approximation

takes the form
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Ψj uð Þ ¼ a
∂u
∂x

� �R
j

¼ a
uRjþ1=2 � uRj�1=2

Δx
; (4а)

where the reconstructed values uRj±1=2 are defined as

uRjþ1=2 ¼ ujþ1 � 1
2

� 1
10

Δuj�1=2 þ 4
5
Δujþ1=2 þ 11

30
Δujþ3=2 � 1

15
Δujþ5=2

� �
uRj�1=2 ¼ uj � 1

2
� 1
10

Δuj�3=2 þ 4
5
Δuj�1=2 þ 11

30
Δujþ1=2 � 1

15
Δujþ3=2

� �
:

(4b)

Here, superscript R denotes the upwind approximation of the gradient using the stencil skewed to
the right.

2.2. Scheme for the linear transport equation on non-uniform meshes

In the case of a non-uniform mesh with nodes xj and mesh steps Δxj + 1/2 = xj + 1� xj, the computa-
tional cell for the node j is defined as the segment with the boundaries xj� 1/2 = (xj� 1 + xj)/2 and
xj + 1/2 = (xj+ xj + 1)/2 and the length ℏj= xj + 1/2� xj� 1/2.
We build the higher-accuracy scheme of (3a) and (3b) or (4a) and (4b) as follows:

Ψj uð Þ ¼ a
∂u
∂x

� �L=R
j

¼ a
uL=Rjþ1=2 � uL=Rj�1=2

ℏj
; (5а)

where the reconstructed values uL=Rjþ1=2 are defined as

uLjþ1=2 ¼ uj þ
Δxjþ1=2

2
� 1
15

Δuj�3=2

Δxj�3=2
þ 11
30

Δuj�1=2

Δxj�1=2
þ 4
5

Δujþ1=2

Δxjþ1=2
� 1
10

Δujþ3=2

Δxjþ3=2

� �
uRjþ1=2 ¼ ujþ1 �

Δxjþ1=2

2
� 1
10

Δuj�1=2

Δxj�1=2
þ 4
5

Δujþ1=2

Δxjþ1=2
þ 11
30

Δujþ3=2

Δxjþ3=2
� 1
15

Δujþ5=2

Δxjþ5=2

� �
:

(5b)

We can also consider the scheme on the reduced 3-points stencil as

uLjþ1=2 ¼ uj þ
Δxjþ1=2

2
1
3

Δuj�1=2

Δxj�1=2
þ 2
3

Δujþ1=2

Δxjþ1=2

� �
uRjþ1=2 ¼ ujþ1 �

Δxjþ1=2

2
2
3

Δujþ1=2

Δxjþ1=2
þ 1
3

Δujþ3=2

Δxjþ3=2

� �
:

(5c)

To define the values uL=Rj�1=2 , we apply the same procedure of reconstruction. Thus, for non-

uniform meshes we use the same coefficients in front of divided differences as in the uniform-mesh
reconstruction.
Such definition of the reconstructed variables on the non-uniform mesh guarantees the following

two important properties:

1. Formulas (5b) coincide with the high-accuracy reconstruction (3b), (4b) on uniform meshes;
2. Formulas (5b) provide the exactness on linear functions of values uLjþ1=2 and u

R
jþ1=2 in interface

points xj + 1/2.

We remark here that (5b) is not the only possible way of reconstruction on non-uniform meshes,
which provides these two properties.
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2.3. Scheme for nonlinear equations

Consider the 1D hyperbolic system of conservation laws

∂Q
∂t

þ ∂F Qð Þ
∂x

¼ 0: (6)

The general formulation of an upwind scheme for Equation (6) can be written as

dQ
dt

� �
j

þ
hjþ1=2 FR

jþ1=2; FL
jþ1=2; QR

jþ1=2; QL
jþ1=2

� 	
� hj�1=2 FR

j�1=2; FL
j�1=2; QR

j�1=2; QL
j�1=2

� 	
Δxjþ1=2 þ Δxj�1=2


 �
=2

¼ 0; (7)

where QL
j±1=2 and QR

j±1=2 are the values of conservative variables reconstructed from the left and

right sides (notations L and R, respectively, see (5b)) with respect to the computational cell bound-
aries хj ± 1/2, FL

j±1=2 and FR
j±1=2 are reconstructed flux variables. h(…) is the numerical flux defined by

some Riemann solver.
For instance, in [32], the scheme LV6 or MUSCLV6 on unstructured meshes is based on the

Roe solver [33] disregarding the values of reconstructed fluxes:

hRoe QR
j±1=2;Q

L
j±1=2

� 	
¼

F QR
j±1=2

� 	
þ F QL

j±1=2

� 	
2

� δ
2

dF
dQ

QRoe
j±1=2

� 	���� ���� QR
j±1=2 �QL

j±1=2

� 	
: (8)

Here, the parameter δ controls the scheme dissipation: 0⩽ δ⩽1. Within the family of schemes (8)
for nonlinear hyperbolic equations, there exist no schemes of accuracy higher than that of the
second order in the point-wise sense even on uniform meshes [34]. To overcome this barrier, the
authors of [32] presented NLV6 scheme based on the 1D solver of Huang [35]:

hHuang FR
j±1=2;F

L
j±1=2

� 	
¼ FR

j±1=2 þ FL
j±1=2

2
� δ
2
sign

dF
dQ

Qj±1=2


 �� �
FR
j±1=2 � FL

j±1=2

� 	
: (9)

In contrast to (8), in this scheme, we reconstruct the fluxes FL
j±1=2 and FR

j±1=2 using the same
formulae (5b) as for the reconstruction of variables. The finite-difference scheme (7), (9) with the
flux reconstruction (5b) possesses the fifth order of accuracy on uniform meshes and transforms
to the sixth-order central-difference scheme if δ=0. However, this scheme can cause instability near
physical boundaries. So there we switch to the reconstruction of conservative variables (7), (8).
A more robust algorithm that also provides the fifth to sixth order of accuracy on uniform meshes

is obtained if we use the reconstructed values both for variables and fluxes:

hRoe FR
j±1=2;F

L
j±1=2;Q

R
j±1=2;Q

L
j±1=2

� 	
¼ FR

j±1=2 þ FL
j±1=2

2
� δ
2

dF
dQ

QRoe
j±1=2

� 	���� ���� QR
j±1=2 �QL

j±1=2

� 	
: (10)

This way is slightly more expensive than schemes (7), (8) and (7), (9) because of a larger number
of reconstructions. However, in some cases, it provides a more stable computation.
Unless otherwise specified later on we imply the Riemann solver of Huang type (9) and, corre-

spondingly, the reconstruction of fluxes, as it is in NLV6 [32].
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3. EDGE-BASED RECONSTRUCTION SCHEMES FOR UNSTRUCTURED MESHES

3.1. Basic conservative vertex-centered formulation

In the case of vertex-centered algorithms considered in the paper, the physical or conservative
variables are defined in the mesh nodes. The construction of a conservative scheme requires to
define control volumes, or cells, used to discretize conservation laws.
The Euler system written for the conservative variables Q= (ρ, ρu, ρv, ρw, E)T is

∂Q
∂t

þ ∂F Qð Þ
∂x

þ ∂G Qð Þ
∂y

þ ∂H Qð Þ
∂z

¼ 0

F ¼

ρu

ρu2 þ p

ρuv

ρuw

u E þ pð Þ

0BBBBBB@

1CCCCCCA; G ¼

ρv

ρuv

ρv2 þ p

ρvw

v E þ pð Þ

0BBBBBB@

1CCCCCCA; H ¼

ρw

ρuw

ρvw

ρw2 þ p

w E þ pð Þ

0BBBBBB@

1CCCCCCA:

The conservation law for this system is

dQi

dt
¼ � 1

Cij j ∫
∂Ci

FFF� nð Þds; FFF ¼ F;G;Hð Þ; (15)

where Ci is the cell of node i, |Ci| is its volume, ∂Ci is its boundary, n= (nx, ny, nz) is the outward unit
normal to the cell boundary, and Qi is the integral average of Q over the cell Ci.
In this paper, we use two types of cells: barycentric and orthocentric. Barycentric cells are

built on the basis of the gravity centers of tetrahedrons, their triangular faces and edges in
the 3D case, and gravity centers of triangles and edge centers in the 2D case. The supporting
points for orthocentric cells are the circumcenters of tetrahedrons, triangles, and edge
centers.
The cell surface can be represented as ∂Ci ¼∪

k ∈ N1 ið Þ
∂Cik where N1(i) is the set of the mesh nodes

neighboring (i.e., connected by a single edge) with the vertex i and ∂Cik is (generally) polyhedral
cell face separating the nodes i and k.
To approximate (15), we substitute Qi (point values of Q in mesh nodes) for Qi. Then we write

∫
∂Ci

FFF� nð Þds ¼
X

k ∈ N1 ið Þ
∫

∂Cik

FFF� nð Þds≈
X

k ∈ N1 ið Þ
hik;

where hik is the numerical flux that approximates the flux through the cell face ik. Thus, the particular
scheme formulation is reduced to the definition of the numerical fluxes hik.
Let us define hik ¼ FFF ik� nik where FFF ik is flux value taken at the point of intersection of the face

∂Cik with the mesh edge ik (this point is the middle of the edge ik) and nik ¼ ∫
∂Cik

nds is the sum of

oriented areas of all the subfaces composing the face ∂Cik.
We call the resulting scheme

dQ
dt

� �
i

¼ � 1
Cij j

X
k ∈ N1 ið Þ

hik (16)
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an edge-based reconstruction scheme if the fluxes hik are found with the help of a 1D reconstruction
procedure along the corresponding mesh edge [36]. The details of such reconstruction in the case of
triangular/tetrahedral meshes are considered further.

3.2. EBR schemes on translationally symmetric triangular/tetrahedral meshes

We introduce a special class of meshes as follows.

Definition 1

A mesh is said to be translationally symmetric if it is translationally invariant with respect to the
vectors of all edges of the mesh.
Translationally symmetric meshes (or TS-meshes) have uniform lattice structure; their examples

(together with cells drawn in red) in 2D case are shown in Figure 1. We can see that triangular
TS-meshes are built by linear transformations of rectangles decomposed in two triangles in a
uniform manner.
Analogously, in 3D case, any tetrahedral TS-mesh is a linear transformation of cubes

decomposed uniformly into six tetrahedrons. Note that the cubic mesh can be uniformly
decomposed into six tetrahedrons only in two different ways§ [37]. In both cases, a set of tetrahe-
drons included in the cube is characterized by seven different edges, so that the mesh remains the
same with respect to the translation by each of them.
In 2D, all the edges of any translational symmetric triangular mesh form three families of equal-

spaced parallel straight lines. In 3D, the tetrahedral TS-mesh structure is described by six families of
parallel planes. An important property of the TS-mesh is that its nodes are located on straight lines
at equal distances.
Let us build an EBR scheme for TS-meshes. To form an Mth-order scheme, we need the differ-

ence of fluxes through the opposite faces ∂Cik and ∂C
iek to approximate the gradient of the function

FFF� nik in the node i multiplied by the vector eik= rk� ri:

hik � h
iek ¼ ∂FFF� nik

∂xm
emik þ O eikj jMþ1 nikj j

� 	
(17)

where ri and rk are the radius-vectors of vertices i and k.
The simplest way to satisfy (17) is a direct implementation of high-accuracy 1D-reconstruction

(3b–4b) based on the mesh nodes on the straight line containing the edge ik (Figure 2). To deter-
mine the numerical flux hik at the middles of mesh edges in (16), we use one of the Riemann solvers
((8) in linear case, (9), (10) or some others), where the values of variables/fluxes taken from

Figure 1. Translationally symmetric meshes (in blue) with barycentric cells (in red).

§

Under uniform decomposition of a cubic mesh we mean the decomposition when all the cubes are decomposed in the
same way that provides translational symmetry of the resulting tetrahedral mesh. To implement this, it is sufficient to
provide the same-oriented diagonal decomposition of all the opposite faces in each cube. Up to reflection and rotation,
there are only two possible techniques of decomposition: In the first case, all the tetrahedrons inside each cube have
one common edge (New Generation Division (NGD) decomposition); in the second case, the tetrahedrons inside each
cube have no edge common for all of them. Both types of decomposition result in topologically equivalent meshes.
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different sides of the cell interface are found from the 1D high-accuracy reconstruction (3b–4b)
along the corresponding edge-based direction.
Note that the condition (17) can be satisfied even when not all the nodes involved in the recon-

struction are located on the edge-based straight line. An example is the NLV6 scheme [32] where
the numerical flux hik is approximated with the help of nodal gradients.

Thus, for the vertex i, the values hik are calculated based on 6-points stencils S1Dik ¼
r 1ð Þ
ik ; r 2ð Þ

ik ; r 3ð Þ
ik ≡ri; r 4ð Þ

ik ≡rk; r 5ð Þ
ik ; r 6ð Þ

ik

n o
. The stencil points r sð Þ

ik ; s ¼ 1; 2; 5; 6
n o

are the mesh

nodes lying on the straight line passing the vertices i and k from both sides of them (Figure 2).

Denote the values of the flux functionFFF� nik at the points r sð Þ
ik ; s ¼ 1; 6 byΦ sð Þ

ik . Then the numer-
ical flux hik can be found as a function hik ΦL

ik;Φ
R
ik


 �
of the flux variablesΦL

ik,Φ
R
ik reconstructed from

both sides of the interface point rik (Figure 2). The 1D high accuracy reconstruction of the flux
variables ΦL

ik, Φ
R
ik according to (3b), (4b) can be written in the form

ΦL
ik ¼ Φi þ 1

2
� 1
15

ΔΦ 3=2ð Þ
ik þ 11

30
ΔΦ 5=2ð Þ

ik þ 4
5
ΔΦ 7=2ð Þ

ik � 1
10

ΔΦ 9=2ð Þ
ik

� �
ΦR

ik ¼ Φk � 1
2

� 1
10
ΔΦ 5=2ð Þ

ik þ 4
5
ΔΦ 7=2ð Þ

ik þ 11
30
ΔΦ 9=2ð Þ

ik � 1
15
ΔΦ 11=2ð Þ

ik

� �

whereΔΦ sþ1=2ð Þ
ik denotes the finite differencesΔΦ sþ1=2ð Þ

ik ¼ Φ sþ1ð Þ
ik �Φ sð Þ

ik . The function hik ΦL
ik;Φ

R
ik


 �
is

determined by the Huang solver (9).

3.3. Accuracy of EBR schemes on translationally symmetric triangular/tetrahedral mesh

Now, we are in position to prove that TS-meshes provide the highest theoretically reachable order
of EBR schemes.

Proposition

On translational symmetric meshes with a uniform method of cell construction for each vertex, the
EBR schemes possess the accuracy of orderM, whereM is the width of the corresponding stencil of
reconstruction (i.e., the stencil consists of M+1 mesh nodes).

Proof

For TS-meshes, the boundary ∂Сi of the control volume Сi consists of couples of opposite faces
∂Cik and ∂Cik̃ between the vertex i and the opposite neighboring vertices k andek. The oriented areas
nik и n

iek corresponding to the opposite faces ∂Cik and ∂Cik̃ are also opposite: nik̃ ¼ �nik. Take one

face from each couple ∂Cik; ∂C
iekn o

and denote the resulting set by N1(i)/2.

Figure 2. The 6-points stencil for the one-dimensional high-accuracy reconstruction of flux variables.
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Let ri, rk, rek be the radius-vectors of vertices i, k, ek. Define the directions of reconstruction as
eik= rk� ri.
Here and below we assume the summation over repeated superscripts.
According to (17), the approximation of the divergence operator in the node i takes the form

∂FFF j

∂xj

� �
i

¼ 1
Cij j

X
k ∈ N1 ið Þ=2

nmike
j
ik

∂FFFm

∂xj

����
r¼ri

þ O

X
k ∈ N1 ið Þ=2

nikj j eikj jMþ1

Cij j

0BB@
1CCA (18)

Thus, to satisfy the condition on the high order of approximation

∂FFFm

∂xm

� �
i

¼ ∂FFFm

∂xm

����
r¼ri

þ O

X
k ∈ N1 ið Þ

nikj j eikj jMþ1

Cij j

0BB@
1CCA; (19)

the following equality

1
Cij j

X
k ∈ N1 ið Þ=2

nmike
j
ik ¼ δmj ¼ 1; j ¼ m

0; j≠m


(20)

is necessary and sufficient on a TS-mesh.
Let us prove (20). Introduce the radius-vector rik ¼ x1ik; x

2
ik; x

3
ik


 �
of the mass center of the face

∂Cik

rik ¼ 1
nikj j ∫

∂Cik

rds:

Using the Gauss–Ostrogradsky theorem, we can express the derivative of an arbitrary linear func-
tion u(r) =L � r=Lmxm as follows:

Lm ¼ 1
Cij j ∫

∂Ci

nm rð Þu rð Þds ¼ Lj
1
Cij j

X
k ∈ N1 ið Þ

∫
∂Cik

nmx jds

0@ 1A:

From here, it immediately follows that
X

k ∈ N1 ið Þ
∫

∂Cik

nmikx
jds ¼ Cij jδmj. Because the boundary of the

control volume consists of couples of opposite faces, we can reformulate it as

Cij jδmj ¼
X

k ∈ N1 ið Þ=2
∫

∂Cik

nmx jdsþ ∫
∂C

i k̃

nmx jds

0@ 1A:

Because the opposite faces are equal up to the translation on the vector eik= rk� ri, we can write
the following:
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Cij jδmj ¼
X

k ∈ N1 ið Þ=2
∫

∂Cik

nmx jdsþ ∫
∂Cik

�nmð Þ x j � e j
ik


 �
ds

0@ 1A ¼
X

k ∈ N1 ið Þ=2
∫

∂Cik

nme j
ikds ¼

X
k ∈ N1 ið Þ=2

e j
ikn

m
ik

which proves (20) and, therefore, the whole Proposition.
Note that there are meshes formally different from TS-meshes where the nodes are also located

on straight lines at equal distances (for example, Figure 3). On such meshes, EBR schemes possess
the accuracy of order M only on barycentric cells. This fact can be easily proved because the
formula (17) remains valid and (20) holds on barycentric cells for arbitrary unstructured meshes.

3.4. EBR scheme on an arbitrary triangular/tetrahedral mesh

3.4.1. 1D reconstruction. In the case of an arbitrary triangular or tetrahedral mesh, the direction of
the flux variable reconstruction is also based on the edge direction, that is, the direction E contain-
ing the edge ik in Figure 4.
The choice of the stencil of reconstruction in the arbitrary unstructured case is not so obvious. Let

us describe the procedure of stencil definition on the example of a triangular mesh. The procedure is

Figure 3. Example of a non-translationally symmetric mesh on which edge-based reconstruction schemes
reach the highest theoretically possible order of accuracy.

Figure 4. Definition of the reconstruction direction and stencil points for an arbitrary triangular mesh.

I. ABALAKIN, P. BAKHVALOV AND T. KOZUBSKAYA

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2015)
DOI: 10.1002/fld



illustrated in Figure 4. The point r 5ð Þ
ik is found at the intersection of line E with the edge [BkCk] of the

triangle AkBkCk. The point r
6ð Þ
ik lies at the intersection of line E with the segment D1

kD
2
k

� �
where the

points D1
k and D

2
k are the intersections of lines parallel to E and passing the vertices A1

k and A
2
k with

the edges B1
kC

1
k

� �
and B2

kC
2
k

� �
, correspondingly. The points r 1ð Þ

ik and r 2ð Þ
ik are found from a similar

geometrical construction to the left from the vertex ri, which involves the triangles AiBiCi,
A1
i B

1
i C

1
i , and A2

i B
2
i C

2
i .

Analogously to the formula for 1D non-uniform meshes (5b), we introduce the procedure of 1D
reconstruction of the function Φik along the line E as

ΦL
ik ¼ Φi þ Δr 7=2ð Þ

ik

2
� 1
15

ΔΦ 3=2ð Þ
ik

Δr 3=2ð Þ
ik

þ 11
30

ΔΦ 5=2ð Þ
ik

Δr 5=2ð Þ
ik

þ 4
5
ΔΦ 7=2ð Þ

ik

Δr 7=2ð Þ
ik

� 1
10

ΔΦ 9=2ð Þ
ik

Δr 9=2ð Þ
ik

 !

ΦR
ik ¼ Φk � Δr 7=2ð Þ

ik

2
� 1
10

ΔΦ 5=2ð Þ
ik

Δr 5=2ð Þ
ik

þ 4
5
ΔΦ 7=2ð Þ

ik

Δr 7=2ð Þ
ik

þ 11
30

ΔΦ 9=2ð Þ
ik

Δr 9=2ð Þ
ik

� 1
15

ΔΦ 11=2ð Þ
ik

Δr 11=2ð Þ
ik

 ! (21a)

where Δr sþ1=2ð Þ
ik ¼ r sþ1ð Þ

ik � r sð Þ
ik

��� ���, s=1,…, 5.

We can also determine a lower-accuracy 1D reconstruction of Φik along the line E as

ΦL
ik ¼ Φi þ Δr 7=2ð Þ

ik

2
1
3
ΔΦ 5=2ð Þ

ik

Δr 5=2ð Þ
ik

þ 2
3
ΔΦ 7=2ð Þ

ik

Δr 7=2ð Þ
ik

 !

ΦR
ik ¼ Φk � Δr 7=2ð Þ

ik

2
2
3
ΔΦ 7=2ð Þ

ik

Δr 7=2ð Þ
ik

þ 1
3
ΔΦ 9=2ð Þ

ik

Δr 9=2ð Þ
ik

 ! (21b)

The points S1Dik ¼ r 1ð Þ
ik ; r 2ð Þ

ik ; r 3ð Þ
ik ≡ri; r 4ð Þ

ik ≡rk; r 5ð Þ
ik ; r 6ð Þ

ik

n o
define the stencil of 1D recon-

struction. Generally speaking, these points do not coincide with the mesh nodes and therefore
cannot be considered as a reconstruction stencil for an arbitrary unstructured mesh. So the divided
differences ΔΦik

Δ rik
in (21a), (21b) need a special definition, which is given in the next section.

3.4.2. Unstructured analogs of divided differences. Define the edge vector eik= rk� ri. For the
geometrical configuration in Figure 4 introduce the supporting triangles

Τ1L ¼ A1
i B

1
i C

1
i

Τ2L ¼ A2
i B

2
i C

2
i

ΤL ¼ AiBiCi ΤR ¼ AkBkCk

Τ1R ¼ A1
kB

1
kC

1
k

Τ2R ¼ A2
kB

2
kC

2
k

:

Let us replace the divided differences in (21a) with P1 Galerkin gradients defined on the
triangles¶ introduced previously and projected onto the line E as

ΔΦ 3=2ð Þ
ik

Δr 3=2ð Þ
ik

¼ σi∇ΦjT1L þ 1� σið Þ∇ΦjT2L
� �� eik

eikj j;

ΔΦ 5=2ð Þ
ik

Δr 5=2ð Þ
ik

¼ ∇ΦjTL � eik
eikj j; ΔΦ 7=2ð Þ

ik ¼ Φk �Φi;
ΔΦ 9=2ð Þ

ik

Δr 9=2ð Þ
ik

¼ ∇ΦjTR � eik
eikj j;

ΔΦ 11=2ð Þ
ik

Δr 11=2ð Þ
ik

¼ σk∇ΦjT1R þ 1� σkð Þ∇ΦjT2R
� �� eik

eikj j

(22)

¶

P1 Galerkin gradient of a vector-function f on the triangle Τ is defined as ∇fjT ¼
X
k ∈ T

fk∇φk where the piece-wise linear
functions φk form the standard basis.
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The weights σi and σk are defined depending on the position of points r
1ð Þ
ik and r 6ð Þ

ik on the segments

D1
i D

2
i

� �
and D1

kD
2
k

� �
, respectively (Figure 3 (left)). For instance, if the point r 6ð Þ

ik is denoted by P then
σk ¼ D2

kP
�� ��= D1

kD
2
k

�� ��.
Formulae (22) define unstructured analogs for the divided differences we need.

3.4.3. Quasi-1D reconstruction. Using (21) and (22), we can formulate the quasi-1D reconstruc-
tion as

ΦL
ik ¼ Φi � 1

30
σi∇ΦjT1L þ 1� σið Þ∇ΦjT2L
� �� eik þ 11

60
∇ΦjTL � eik þ 2

5
Φk �Φið Þ � 1

20
∇ΦjTR � eik

ΦR
ik ¼ Φk þ 1

20
∇ΦjTL � eik � 2

5
Φk �Φið Þ � 11

60
∇ΦjTR � eik þ 1

30
σk∇ΦjT1R þ 1� σkð Þ∇ΦjT2R
� �� eik

(23a)

Definition 2

We say that a reconstruction is quasi-1D of Mth order if it transforms to the Mth-order high-order
1D reconstruction on TS-meshes.
The schemes based on the reconstruction (23a) or other approximations on unstructured stencils

that meet the definition of quasi-1D reconstruction of the fifth order are further referred to as the
EBR5 schemes.
Analogously, if we imply a lower-order 1D reconstruction (21b), we can build an EBR3 scheme

of the third highest theoretically reachable order by using the quasi-1D reconstruction:

ΦL
ik ¼ Φi þ 1

3
Φk �Φið Þ þ 1

6
∇ΦjTL � eik

ΦR
ik ¼ Φk � 1

3
Φk �Φið Þ � 1

6
∇ΦjTR � eik:

(23b)

3.4.4. Stencil of quasi-1D reconstruction. The set of nodes S1Dik ¼ r 1ð Þ
ik ;r

2ð Þ
ik ;r

3ð Þ
ik ≡ri; r

4ð Þ
ik ≡rk; r

5ð Þ
ik ;r 6ð Þ

ik

n o
cannot be considered as a reconstruction stencil for an arbitrary unstructured triangular or tetrahe-
dral mesh because, in general, these nodes are not the mesh vertices. In the case considered in
Sections 3.4.1 and 3.4.2, for quasi-1D reconstruction (23a), the real stencil of reconstruction is
the set of the mesh nodes (Figure 4)

SQ1Dik ¼ B2
i ;C

2
i ;B

1
i ;C

1
i ;Bi;Ci;Ai;Ak;Bk;Ck;B

1
k ;C

1
k ;B

2
k ;C

2
k

� �
:

In other words, the reconstruction stencil includes, besides the mesh nodes ri and rk, the vertices
of the two first-level supporting triangles AkBkCk and AiBiCi, and vertices of the four second-level
supporting triangles A1

kB
1
kC

1
k,A

2
kB

2
kC

2
k,A

1
i B

1
i C

1
i , andA

2
i B

2
i C

2
i . Totally, it can contain up to 14 vertices.

The stencil SQ1Di is the stencil of quasi-1D reconstruction.
For an unstructured tetrahedral mesh, the stencil of quasi-1D reconstruction is composed analo-

gously. The difference is that the stencil SQ1Di for the calculation of the numerical flux hik in the 3D
case consists, besides the mesh nodes ri and rk, of vertices of the two first-level and six (three from
each side of edge ik) second-level supporting tetrahedrons. In the 3D case, a stencil of quasi-1D
reconstruction can contain at most 26 vertices.
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3.5. Economical quasi-1D reconstruction and new simplified EBR schemes

Let us consider the determination of values ΦL
ik and ΦR

ik taken from the different sides of cell inter-
face in the framework of the method described previously. Recall that to derive formulae (23a), we
replace the first divided differences in (21) with the gradients defined on the corresponding trian-
gles. At the same time, obviously, the formula (21) can be implemented directly if we determine

the values Φ sð Þ
ik at all the points r sð Þ

ik ; s ¼ 1; 6. Let us elaborate on this idea.
First, note that the reconstruction (23b) of EBR3 schemes remains the same if we define the miss-

ing values Φ 2ð Þ
ik and Φ 5ð Þ

ik at the points r 2ð Þ
ik and r 5ð Þ

ik in (21b) as linear interpolations on the segments
[Bi,Ci] and [Bk,Ck] and then calculate the corresponding first divided differences explicitly. Let us

build a similar procedure for the evaluation of valuesΦ 1ð Þ
ik andΦ 6ð Þ

ik at the points r 1ð Þ
ik and r 6ð Þ

ik based on
linear interpolations that does not compromise the scheme accuracy. Let us demonstrate the proce-

dure on the example of the value Φ 1ð Þ
ik to be defined at the point r 1ð Þ

ik .
For a node i, define the set of nodes N2(i) that are connected with the node i by two mesh edges

and not by one mesh edge. Thus, the set N2(i) includes all the ‘second-level’ neighbors of the node i.
Then consider a ‘shell’ consisting of all the mesh edges (mesh faces in 3D) connecting the nodes of
N2(i). Leaving aside boundary regions, we can assert that there exists at least one edge (face in 3D)
of this ‘shell’ that intersects the line E from the left of node i. In the case of a structured mesh, these
edges form a closed contour around the node i, and there is only one intersection of this contour

with the line E from the left of the node i. Take this intersection point as the point r 1ð Þ
ik . If the mesh

is unstructured, there can be several intersections, and any of them can be taken as the point r 1ð Þ
ik .

When the point r 1ð Þ
ik is defined, we calculate the value Φ 1ð Þ

ik by the linear interpolation on the edge

(face in 3D) containing r 1ð Þ
ik .

Figure 5. Stencil of economical quasi-one-dimensional reconstruction for an arbitrary triangular mesh.

Table I. A number of stencil nodes used in the economical reconstruction of fluxes.

A number of stencil nodes

Reconstruction 2D 3D
Basic Up to 14 Up to 26
Economical 10 14

2D, two-dimensional; 3D, three-dimensional.
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Figure 5 illustrates the resulting procedure of economical reconstruction and shows its
economical stencil SQ1D Ec

ik consisting of 10 nodes (in 2D case): SQ1D Ec
ik ¼

B1
i ;B

2
i ;A

1
i ;A

2
i ;Ai;Ak;A1

k ;A
2
k ;B

1
k ;B

2
k

� �
.

A number of the stencil nodes needed for the determination of each couple of fluxesΦL
ik andΦ

R
ik is

given in Table I. Thus, in 3D case, the economic reconstruction reduces the number of stencil points
needed for the flux calculation almost twice. Note also that the size of the economical stencil is
minimal possible required for quasi-1D reconstruction of EBR schemes.
The schemes based on the reconstruction on the economical stencil form a new subfamily of EBR

schemes that are further referred to as the SEBR schemes. As it is shown further, the SEBR schemes
provide practically the same accuracy as other EBR schemes of the corresponding theoretically
reachable order, but gain noticeably in computational costs.

3.6. EBR scheme in boundary region

A common problem for the schemes operating on wide stencils is that near the boundary it is
impossible to define the appropriate stencil. The most widespread solution in this case is to reduce
the stencil and, correspondingly, the scheme order of accuracy.
When we use the scheme of reduced order near the walls, it is important to keep the scheme exactness

on linear functions. Thus, if there is no stencil for the EBR5 or SEBR5 schemes, we use the lower-
accuracy EBR3 schemes. If there is no stencil for the EBR3 schemes, we use the following schememod-
ification. Let, for example, the triangle TL (Figure 4) cannot be found. Define the valuesΦL

ik andΦ
R
ik as

ΦL
ik ¼

1
2
Φi þΦkð Þ

ΦR
ik ¼ Φk � 1

3
Φk �Φið Þ � 1

6
∇ΦjTR � eik:

This approximation is exact on linear functions and in practice provides stable computations.
If the node i or k is located in the vicinity of a boundary with some non-reflecting boundary

conditions, the first-order scheme can be used. When at least one of these nodes lays on a solid wall,
to provide a stable computation, we use the Roe solver (8) and the reconstruction of conservative
variables even if we reconstruct fluxes in internal regions.

3.7. Accuracy of EBR schemes on arbitrary triangular/tetrahedral meshes

Numerous numerical results suggest that EBR schemes on unstructured meshes in the case of
barycentric cells possess the second-order of accuracy. A strict proof of this fact is still lacking.
We think that this follows from the first order of approximation coupled with exactness on linear
functions of flux variables ΦL

ik and ΦR
ik in the middle of the mesh edge ik.

At the same time, as shown previously, there is a special class of meshes, namely, TS-meshes,
providing the highest theoretically reachable (fifth and sixth) order of accuracy for EBR schemes.
Although TS-meshes are not so widely used in practice, the property of high accuracy on
TS-meshes appears useful. For instance, 2D mesh generators are able to produce unstructured
meshes containing large structured blocks of triangles. Inside these domains, a mesh is often close
to translationally symmetric. This fact provides high quality of computations in total. In the test cases
presented in the succeeding text, we specially avoid such ‘quasi-structured’ meshes and use really
unstructured meshes. Unfortunately, popular 3D mesh generators do not offer ‘quasi-structured’
meshes. So the development of such mesh generators would be a significant contribution to the
high-accuracy numerical simulations performed with the help of EBR schemes.
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4. NUMERICAL RESULTS

4.1. Evolution of the 2D Gaussian pulse

To estimate experimentally the order of EBR schemes, we consider the initial-value problem for the
linearized Euler equations with the initial data:

ρ x; yð Þjt¼0 ¼ p x; yð Þjt¼0 ¼ Ae
�ln2
b2

x2 þ y2

 �

u x; yð Þjt¼0 ¼ v x; yð Þjt¼0 ¼ 0

The background field is ρ ¼ 1; u ¼ v ¼ 0; p ¼ 1=γ.
The initial shape of the Gaussian pulse is determined by the amplitude A=0.5 and the half-width

b=12.
We consider two types of triangular unstructured meshes: TS-meshes composed of regular

triangles and unstructured meshes generated by Gmsh generator. Fragments of such meshes with
the corresponding barycentric and orthocentric cells are shown in Figure 6.
For the time integration, we use the explicit linear fifth-order Runge–Kutta method.

Figure 6. Translationally symmetric (upper row) and unstructured (lower row) meshes: mesh fragments (left
column) and corresponding barycentric (middle column) and orthocentric (right column) cells.

Table II. The errors and the estimated order of accuracy in the case of translationally-symmetric meshes in
C-norm and L1-norm.

Scheme: P2 EBR3 EBR5= SEBR5 FC

Norm С 2.98 2.98 4.95 1.99
7.721 × 10�4 8.206 × 10�4 3.122 × 10�5 2.514 × 10�3

1.012 × 10�4 1.079 × 10�4 1.013 × 10�6 6.459 × 10�4

1.282 × 10�5 1.369 × 10�5 — 1.625 × 10�4

Norm L1 2.99 2.99 4.93 2.01
1.238 × 10�4 1.314 × 10�4 4.699 × 10�6 3.798 × 10�4

1.588 × 10�5 1.681 × 10�5 1.537 × 10�7 9.455 × 10�5

1.997 × 10�6 2.110 × 10�6 — 2.355 × 10�5

EBR, edge-based reconstruction; SEBR, simplified EBR; FC, flux corrector.
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To estimate the scheme accuracy, the computations are performed on three meshes with the cell
diameter approximately equal to 2, 1, and 0.5. The half-width b=12 is resolved on 6, 12, and 24
cells correspondingly.
The scheme accuracy is evaluated at the time moment t=40. The corresponding numerical results

(Tables II and III) are given in terms of the errors eh= ‖ρh�ρex‖ in the computation of density ρh
with respect to its exact value ρex in the norms L1 and C. The accuracy order n is estimated using

the formula n ¼ lnecoarse�lnefine
ln2 , where ecoarse and efine are the errors obtained on the two meshes with

the smallest steps.
The EBR schemes are compared with the quadratic-polynomial-based vertex-centered FV

scheme (denoted here as P2) of the third order of accuracy [37] and with the FC scheme‖ providing
the third order of accuracy for steady problems [21].
As it is seen in Table II, on the mesh that consists of regular triangles (TS-mesh, Figure 6), the

schemes EBR3 and EBR5 exhibit the third and the fifth order of accuracy correspondingly. This
fact is in full agreement with the theoretical results of Section 3.3. The result obtained by the
scheme EBR5 on the mesh with the smallest step is not given because of the insufficient accuracy
in exact-value calculation. The FC scheme exhibits the second order of accuracy theoretically
expected on unsteady problems.
On all the meshes in use, the quadratic-polynomial scheme P2 shows its theoretical third order of

accuracy. In contrast to the EBR schemes, here, we consider the averaged values over cells built
around the mesh nodes.
On unstructured meshes (Figure 6), both EBR3, EBR5, and FC schemes demonstrate the second

order for barycentric cells, while for orthocentric cells – the first order only. However, the order of
accuracy characterizes the scheme accuracy in asymptotics and is not always representative for a
fixed mesh in use. In this sense, it is important to analyze not only the order of accuracy but also
the values of errors. For instance, the scheme EBR3 on barycentric cells turns out to be close (both
in accuracy and order) to the polynomial scheme P2 (Table III), while the scheme EBR5 exhibits
only the second order of accuracy. At the same time, the values of errors in the EBR5 case are
significantly smaller. The explanation of this fact may be the following. For the mesh in use, the

Table III. The errors and the estimated order of accuracy in the case of unstructured meshes with the use of
barycentric and orthocentric control volumes in C-norm (upper table) and L1-norm (lower table).

Norm:
C-norm

Scheme: P2 EBR3 EBR5 SEBR5 FC

Barycentric cells 2.94 2.28 1.76 1.72 1.99
9.633 × 10�4 1.122 × 10�3 5.315 × 10�4 5.530 × 10�4 2.509 × 10�3

1.243 × 10�4 1.714 × 10�4 1.028 × 10�4 1.066 × 10�4 6.347 × 10�4

1.620 × 10�5 3.523 × 10�5 3.039 × 10�5 3.247 × 10�5 1.594 × 10�4

Orthocentric cells 2.97 0.92 1.06 1.06
1.035 × 10�3 1.866 × 10�3 1.596 × 10�3 1.615 × 10�3

1.329 × 10�4 8.964 × 10�4 1.213 × 10�3 1.213 × 10�3

1.695 × 10�5 4.754 × 10�4 5.821 × 10�4 5.798 × 10�4

Norm: L1-norm
Scheme: P2 EBR3 EBR5 SEBR5 FC
Barycentric cells 2.99 2.94 2.05 2.03 2.01

1.449 × 10�4 1.204 × 10�4 1.931 × 10�5 2.143 × 10�5 3.690 × 10�4

1.849 × 10�5 1.578 × 10�5 4.048 × 10�6 4.549 × 10�6 9.157 × 10�5

2.323 × 10�6 2.043 × 10�6 9.780 × 10�7 1.113 × 10�6 2.272 × 10�5

Orthocentric cells 2.97 1.11 0.93 0.93
1.545 × 10�4 1.500 × 10�4 9.567 × 10�5 9.743 × 10�5

1.967 × 10�5 4.974 × 10�5 5.131 × 10�5 5.179 × 10�5

2.483 × 10�6 2.293 × 10�5 2.699 × 10�5 2.716 × 10�5

EBR, edge-based reconstruction; SEBR, simplified EBR; FC, flux corrector.

‖

For calculating gradients in the FC scheme, we use cubic-polynomial reconstruction.
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highest terms of scheme error, that is, the terms of second order of vanishing, generally appear
smaller than the terms of third order. The scheme EBR5 damps the third-order terms, in contrast
to the schemes P2 and EBR3. This phenomenon has been investigated in [38] for 1D case. The
FC scheme demonstrates its second order on unsteady problems, however produces the error
significantly larger than the EBR3 scheme.
Table III shows that the usage of orthocentric cells on unstructured meshes lowers accuracy. How-

ever, this type of cells is needed in boundary layers. Moreover, it is possible to combine the cells of
different types within one computation, in order to gain the advantages of both in different regions.
The results obtained with the economical reconstruction are close to those obtained with the basic

version of reconstruction. It is expectable because we still keep two main properties – the exactness
on linear functions and the continuous transformation to the high-order scheme on TS-meshes.

4.2. Evolution of 3D Gaussian pulse

Let us consider a similar test case in the 3D formulation for unstructured tetrahedral meshes. As
initial conditions, we take

ρ x; y; zð Þjt¼0 ¼ p x; y; zð Þjt¼0 ¼ Ae
�ln2
b2

x2 þ y2 þ z2

 �

u x; y; zð Þjt¼0 ¼ v x; y; zð Þjt¼0¼ w x; y; zð Þjt¼0 ¼ 0:

Fix the Gaussian half-width b=6 and the amplitude A=1/2. The scheme accuracy is estimated at
the time moment T=20.
For the computations, we use the meshes of two types. The first type is quasi-uniform unstruc-

tured meshes with the mesh step approximately equal to 1, 0.5, and 0.25; the second type is
TS-meshes. The TS-mesh in use is built according to the following procedure. First, we take the
structured mesh consisting of parallelepipeds with the coordinates of vertices for a coarser mesh

Table IV. The errors and the estimated order of accuracy for TS meshes with the use of barycentric and
orthocentric control volumes in C-norm and L1-norm.

Scheme:
EBR3 EBR5 FC

Cells: Barycentric Orthocentric Barycentric Orthocentric Barycentric

Norm С 2.79 2.94 4.84 4.85 2.06
6.71 × 10�3 2.64 × 10�3 7.41 × 10�4 1.44 × 10�4 1.15 × 10�2

9.71 × 10�4 3.46 × 10�4 2.63 × 10�5 4.96 × 10�6 2.74 × 10�3

Norm L1 2.85 2.88 4.88 4.91 1.96
1.66 × 10�3 7.71 × 10�4 1.59 × 10�4 3.83 × 10�5 3.12 × 10�3

2.31 × 10�4 1.05 × 10�4 5.38 × 10�6 1.26 × 10�6 8.03 × 10�4

TS, translationally symmetric; EBR, edge-based reconstruction; FC, flux corrector.

Table V. The errors and the estimated order of accuracy for unstructured meshes with the use of barycentric
control volumes in C-norm and L1-norm.

Scheme: EBR3 EBR5 SEBR5 FC

Norm С 2.65 2.41 2.00 2.06
4.794 × 10�3 1.548 × 10�3 1.822 × 10�3 1.391 × 10�2

6.538 × 10�4 3.898 × 10�4 4.358 × 10�4 3.209 × 10�3

1.042 × 10�4 7.343 × 10�5 1.089 × 10�4 7.678 × 10�4

Norm L1 2.82 2.06 2.06 1.90
7.233 × 10�4 2.194 × 10�4 2.497 × 10�4 2.348 × 10�3

9.691 × 10�5 4.426 × 10�5 5.149 × 10�5 6.016 × 10�4

1.370 × 10�5 1.061 × 10�5 1.237 × 10�5 1.505 × 10�4

EBR, edge-based reconstruction; SEBR, simplified EBR; FC, flux corrector.
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andCijk ¼ 1
2

iþ 0:33jþ 0:16k

�0:27iþ jþ 0:4k

0:15i� 0:22jþ k

0B@
1CA for a finer one. Then we decompose all the parallelepipeds into

tetrahedrons using the NGD-method [30].
The results of accuracy estimations are collected in Tables IV and V. In general, they confirm the

conclusions made on the base of 2D test predictions presented in the previous section. On
TS-meshes, the EBR3 scheme exhibits the third order of accuracy, the EBR5 scheme – the fifth
order of accuracy that is their highest theoretically possible orders. A slightly better accuracy is
reached in the case of orthocentric cells because of the better shapes of these cells.
On quasi-uniform unstructured meshes with barycentric cells, the EBR3 and EBR5 schemes are

of the second order of accuracy. A remarkable detail is that the estimated order of EBR3 scheme is
close to third and a little higher than the order of EBR5 scheme, while in the case of EBR5 scheme
the errors are smaller. As expected for unsteady problems, the FC scheme demonstrates the second
order of accuracy while producing significantly larger errors than the EBR schemes under
consideration.

4.3. Analysis of computational costs

In this paragraph, we compare the SEBR schemes with quadratic-polynomial-based finite-volume
schemes and flux correction scheme [21] in terms of the number of operations in 2D case. Suppose
that we consider the 2D Euler equations so the number of unknown variables is equal to 4. Denote
the number of mesh nodes by Nn and the number of mesh edges by Ne. For consistency, we
consider a polynomial-based scheme in vertex-centered formulation and assume that each cell face
∂Cik consists only of one segment.
We estimate addition and multiplication as 1 operation each, division as four operations, and

square root calculation as eight operations, which corresponds to modern computers. We estimate
the average number of nodes in the second-order polynomial stencil as 11.5, which corresponds
to the polynomial construction method presented in [24].
The implementation of the SEBR5 scheme based on Huang solver includes the following:

• calculation of FFF ¼ ðF;GÞ in the mesh vertices – 17×Nn operations;
• calculation of Φ sð Þ

ik ¼ FFF�nik in the points of economical stencil s ¼ 1; 10 for four variables at
all the mesh edges – 3×10×4×Ne=120×Ne operations;

• calculation of Φ 1ð Þ
ik , Φ 2ð Þ

ik , Φ 5ð Þ
ik , and Φ 6ð Þ

ik in points r 1ð Þ
ik , r 2ð Þ

ik , r 5ð Þ
ik , and r 6ð Þ

ik (Figure 5) by the
linear interpolation on the values in the stencil nodes for four variables at all the mesh
edges – 4 × 4× 3×Ne = 48×Ne operations;

• calculation of the reconstructed variablesΦL
ik andΦ

R
ik for four variables at all the mesh edges –

2×9×4×Ne=72×Ne operations; and
• implementation of Huang solver at all the mesh edges – ~145×Ne operations.

Totally, using approximation Ne~3Nn, we estimate the costs of the SEBR5 scheme as 1172×Nn.
For the P2 scheme based on quadratic-polynomials and Roe solver, we have the following:

• calculation of five polynomial coefficients for four variables in the mesh vertices –
4×5×23×Nn=460×Nn operations;

• calculation of reconstructed variables in two Gaussian points for four variables at all the mesh
edges – 2×2×4×13×Ne=208×Ne operations; and

• implementation of Roe solver in two Gaussian points at all the mesh edges –
~2×230×Ne=460×Ne operations.

Totally, we estimate the costs of the vertex-centered P2 scheme as 2464×Nn.
Similar reasoning for the FC scheme based on quadratic-polynomials, using the reconstruction

both for fluxes and conservative variables and the Roe solver, gives the following:

• calculation of FFF ¼ ðF;GÞ in the mesh vertices – 17×Nn operations;
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• calculation of two derivatives for four conservative variables and eight flux variables FFF in the
mesh vertices – (4 + 8) × 2×23×Nn=552×Nn operations;

• projection of the derivatives into edge direction – 2× (4+8) ×3×Ne=72×Ne operations;
• calculation ofΦi ¼ FFF inik and the same operation for the gradients – 2×2×4×3×Ne=48×Ne

operations;
• calculation of reconstructed value for the variables and fluxes at all the mesh edges –
2× 3× (4 + 4) ×Ne = 48×Ne operations; and

• implementation of Roe solver at all the mesh edges – ~170×Ne operations.

Totally, we estimate the costs of the vertex-centered FC scheme as 1583×Nn. The FC-scheme
costs can be reduced up to 1183×Nn if we use the Huang solver like in the SEBR scheme. As a
result, we find that the computational costs of FC and SEBR5 schemes are approximately the same.
Now, let us estimate the computational costs of EBR schemes experimentally. Tables VI and VII

collect the results of experimental investigation of the schemes costs in terms of processing time in
seconds and, in Table VII, in terms of numbers of operations per node per one Runge–Kutta
iteration. The time for preprocessing is neglected. All the data are obtained for barycentric cells.
For the 2D case of Section 4.1, we examine three EBR schemes based on the 1D Riemann solver

of Huang (10-11) with different types of quasi-1D reconstruction of fluxes. We take the unstruc-
tured mesh of 212444 nodes and run six time steps of three-stage Runge–Kutta method. The
resulting computational costs are given in Table VI. We see that the SEBR5 scheme is the fastest
among the three EBR schemes under consideration.
For the 3D case of Section 4.2, we examine the low-order vertex centered scheme, EBR3 and

SEBR5 schemes, and compare them with the FC scheme. We use both nonlinear and linear formu-
lations based on the Euler system and its linearized version. We take the unstructured mesh of
147338 nodes and run six time steps of three-stage Runge–Kutta method. When implementing
the FC scheme, we have used the polynomial construction method [24] with the stencil of 28.5
nodes in average used for the gradient calculation. The experimental results on computational costs
are given in Table VII.
The data of Table VII say that the FC scheme is slower than the EBR3 scheme but faster than the

SEBR5 scheme even for nonlinear problem despite a larger number of operations needed. The last
phenomenon is connected with the nodal-gradient calculations spending approximately half of total
computational costs. The calculation of nodal gradients in the FC scheme is implemented as a
matrix–vector product that treats all the variables simultaneously (20 variables totally – five conserva-
tive variables and 15 flux variables). This operation is highly efficient with regard to memory access.

Table VI. The computational costs of EBR schemes in processing time.

EBR5 scheme:
LV6 (nodal
gradients)

EBR5 (gradients on
supporting triangles)

SEBR5 (economical stencil
–finite differences)

Processing time (in seconds) 14.51 11.99 10.52

EBR, edge-based reconstruction; SEBR, simplified EBR.

Table VII. The computational costs of different schemes in processing time and number of operations.

Scheme Low-order EBR3 SEBR5
FC quadratic
polynomials

Linear 3D problem,
reconstruction for
variables only

Approximate number of
operations per node per
one RK iteration

690 3010 4270 3375

Processing time (in seconds): 11.39 14.65 17.98 14.85
Nonlinear 3D problem,
reconstruction for both
variables and fluxes

Approximate number of
operations per node per
ones RK iteration

540 4020 5630 7060

Processing time (in seconds): 10.66 17.29 24.23 21.24
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Note that in 3D formulation, the quadratic-polynomial-based FV schemes [7] are much more
expensive than the EBR schemes because of the wide stencil and the necessity to calculate 10 poly-
nomial coefficients at each mesh cell.

4.4. Acoustic wave scattering by the Gaussian-core vortex

Simulation of wave scattering by isolated vortices of different shapes is a widely used benchmark
problem in computational aeroacoustics (CAA). For instance, for the Gaussian-core vortex in 2D
this case was studied in [39].
We use this problem to estimate the order of EBR schemes as applied to the Euler equations

linearized on a non-uniform background flow field. As the mean flow field, we take the
Gaussian-core vortex. It is characterized by the Mach number Mv= (Vθ)max/c∞ where (Vθ)max is
the maximal tangential velocity and c∞ is the speed of sound far from the vortex core. The corre-
sponding flow fields are given as

Vθ ¼ Mv

1� exp �αð Þð Þr 1� exp �αr2

 �
 �

; Vr rð Þ ¼ 0

∂p
∂r

¼ γpð Þ1=γ V2
θ

r
;

(24)

where a is the vortex radius and r is the distance to the vortex center. The constant α=1.256431 is
chosen so that the maximal tangential velocity is reached at the distance r= a. The last equation of
(24) is solved numerically.
Cylindrical acoustic waves are generated by the acoustic source term

s r; tð Þ ¼ A exp � ln 2

b2
r� r0ð Þ2

� �
sin 2πνtð Þ r ¼ x; yð Þ

where b=1 and A=0.1 are the Gaussian half-width and amplitude correspondingly, ν=0.25 is the
frequency.
The computational domain is schematically depicted in Figure 7. The source center is placed at

r0 = (25, 20).
The problem is solved on three meshes with halving steps. The approximation order is estimated

by comparing the instantaneous pressure fields obtained on the meshes with steps h, 2h, 4h
according to the formula

Figure 7. Scheme of the computational domain for the problem of acoustic wave scattering by the
Gaussian-core vortex.
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n≈
ln p′h � p′4h
�� ��� ln p′h � p′2h

�� ��
ln 2

The calculations of corresponding discrepancies ‖ � ‖ in different norms are based only on the
nodes of the coarsest mesh, which are common for all the three meshes in use. The integral norms
L1 and L2 are evaluated on the subdomain {(x, y) : 0< x<20, 10< y<30}.
The estimations are performed for three time moments: 1 – the wave does not reach the vortex,

2 – the wave is passing the vortex, 3 – the wave has passed the vortex.
For the simulations, we use the EBR5 scheme of the fifth theoretically reachable order of

accuracy combined with the fifth-order explicit linear Runge–Kutta method for time integration.
Three types of triangular meshes are as follows: (1) ‘Cartesian’; (2) quasi-uniform ‘acute-angled’
(Figure 4, middle row); and (3) TS regular-triangular, participate in the experimental evaluation
of accuracy.
The results collected in Table VIII confirm the fifth order of accuracy theoretically expected for

the ‘Cartesian’ mesh and the TS mesh consisting of regular triangles. The orders estimated on the
quasi-uniform mesh are significantly lower, although still noticeably higher than second.

4.5. Steady viscous nonconducting shock

In Sections 4.1–4.3, it is shown that for unsteady problems, the EBR schemes, being of the second
order of accuracy as the FC scheme and comparable with it in computational costs, can give signif-
icantly better results. It is interesting now to compare the numerical results for steady problems
where the FC scheme offers the third order of accuracy and, at the same time, to validate our imple-
mentation of this scheme.
Most of steady problems include walls, and thus, the quality of near-wall approximation may

crucially influence the computational accuracy. To avoid this problem, we have chosen a steady
problem without walls.
The viscous terms are approximated in the following way. At first, at all the mesh vertices, we

calculate gradients of physical variables using the third-order interpolation polynomial. Then we

Table VIII. The estimated order of accuracy.

Norm C Norm L1 Norm L2

Time moments 1 2 3 1 2 3 1 2 3
‘Cartesian’ mesh 4.94 4.94 4.92 4.99 5.00 5.00 4.98 4.99 5.00
Quasi-uniform mesh 2.51 2.68 2.66 2.47 2.40 2.39 2.44 2.40 2.39
TS regular-triangular mesh 5.00 4.97 4.97 5.01 5.01 5.01 5.01 5.01 5.01

TS, translationally symmetric.

Figure 8. Convergence of solution error in two-dimensional (2D) case. EBR, edge-based reconstruction;
FC, flux corrector.
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add these gradients to the convective fluxes and apply the same scheme that we use for the convec-
tion. The same technique, in particular, has been used in [40].
Let us consider the problem both in 2D and 3D formulations. At the input and output boundaries,

we keep the exact solution. In 2D case, we use quasi-uniform triangular mesh generated by gmsh, in
3D case – by Gambit.
We estimated the accuracy without considering a possible slight shift between the numerical and

exact solutions. To implement this, we determine the shift with the help of least square method.
Figure 8 (left) shows that on the uniform Cartesian mesh, the error of the FC scheme is approx-

imately one-half of the error of EBR3 scheme, and both schemes exhibit their third order of
accuracy. Note that in the present computations, we have used cubic polynomials for calculating
convective fluxes. If we use quadratic polynomials, the results of FC and EBR3 practically
coincide. The EBR5 scheme exhibits the fourth order of accuracy because the convective fluxes
are calculated with the fifth order, while our approximation of viscous-terms gradients with the
use of third-order polynomials coincides with the fourth-order central differences.

Figure 9. Convergence of solution error in three-dimensional (3D) case. EBR, edge-based reconstruction;
FC, flux corrector.

Figure 10. VALIANT ‘gap – turbulence interaction’ case: SA IDDES (Re = 2 ∙ 104), vorticity magnitude in
the central cross-section. The Cartesian mesh of 8.4 million nodes and 49.5 million tetrahedrons.

Figure 11. VALIANT ‘two-cylinders’ case: SA DDES (Re= 1.8 ∙ 105), velocity magnitude isosurfaces (left)
and vorticity magnitude (right) in the central cross-section. The structured non-Cartesian mesh of 13 million

nodes and 72 million tetrahedrons.
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On the unstructured triangular mesh (Figure 8, right), the FC scheme keeps the third order of
accuracy, while the convergence of both EBR3 and EBR5 schemes degrades to the second order.
In spite of this, on coarse meshes, the EBR5 and FC schemes produce very close results. Another
remarkable detail, as in the linear case of Gaussian pulse simulation presented in Section 4.2, is that
on a segment of coarse meshes, the EBR3 scheme exhibits the convergence similar to the third-
order and thus to the convergence of the FC scheme.
In the 3D unstructured case, the convergence of solution error for all the schemes under study

remains about the same as in the 2D case (Figure 9).

4.6. EBR schemes for real applications

The quasi-1D reconstruction underlying the EBR schemes has been also used for the approximation
of the Spalart–Allmaras, k-ε, k-ω, and shear stress transport (SST) turbulence closure models,

Figure 12. VALIANT ‘two cylinders’ case: time-averaged Mach number field in the central cross-section
— numerical (left) and experimental (right) results.

Figure 13. Round jet – cylinder interaction: DNS (Re = 104), absolute velocity field (left), SA IDDES
(Re = 5.6 · 104), pressure time derivative (middle). Fragment of unstructured mesh of 100 million tetrahe-

drons (right).

Figure 14. Perforated cell of acoustic liner: density field (left), fragment of unstructured mesh of 1.2 million
nodes and 6.4 million tetrahedrons (middle), and estimated acoustic impedance (right).
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which allows us to apply these schemes for simulation of turbulent flows within the Reynolds-
averaged Navier–Stokes (RANS) and hybrid detached eddy simulation (DES) approaches.
The EBR schemes and the corresponding quasi-1D developments have been implemented in the

KIAM in-house code NOISEtte [41] exploiting the hybrid MPI-OpenMP parallelization model that
has opened the doors to solving 3D applied problems.
In FP7 VALIANT Project, NOISEtte and, thus, the EBR schemes have been validated on two

generic cases. Figures 10–12 show the numerical results of ‘gap – turbulence interaction’ and
‘two cylinders’ cases of VALIANT correspondingly. The details are given in [42–44].
The 3D simulations of round jet – cylinder interaction [45], the flow around 11-holes perforated

cell of acoustic liner in a waveguide [46–48], are illustrated in Figures 13 and 14.

5. CONCLUSIONS

The paper considers the family of EBR schemes for solving systems of conservation laws with
dominant advection as an extension of finite-difference methods to unstructured meshes. In the
framework of finite-difference approach, the main idea of the EBR schemes construction consists
in their formulation in terms of divided differences along the edge-based direction and the subse-
quent replacement of the differences by unstructured analogs.
On uniform grid-like meshes (TS-meshes), the EBR schemes provide the theoretical high order

of accuracy (EBR3 and EBR5 schemes – up to the fourth and sixth order correspondingly). While
not keeping very high order for arbitrary unstructured meshes, these schemes possess higher accu-
racy (compared with most second-order schemes) in terms of absolute errors owing to the quasi-1D
high-order reconstruction. On coarse meshes used for real problems, the EBR5 schemes in many
cases provide better results than the quadratic-polynomial-based FV scheme [7], which is signifi-
cantly more expensive.
The recently developed FC scheme [21] presents a good alternative to the EBR3 and EBR5

schemes. It computationally costs approximately the same as the EBR schemes and provides
the third order of accuracy for steady problems. For these problems, the EBR schemes give
the results close to those obtained by the FC method only on coarse meshes, while on fine
meshes, the accuracy of FC scheme is better. Basing on the test cases performed, we conclude
that the EBR schemes are more accurate for unsteady problems. Another advantage of the EBR
schemes is their high accuracy (up to the sixth order) on TS-meshes. This fact evokes ideas
of generating meshes well suited for the EBR schemes, in particular, including domains of
TS-meshes.
The gain in costs of the EBR schemes (with respect to the costs of most third-order schemes ex-

cept, may be, the FC method) becomes especially significant for the algorithms equipped with
shock-capturing techniques. This fact, in particular, has encouraged us to implement the quasi-1D
reconstruction for the development of an efficient WENO-EBR scheme for unstructured meshes
[49], [51],** which can be considered as a ‘lite WENO’ scheme. Before, in [29, 32], the quasi-
1D TVD-method was discussed.
Generally, in the multidimensional unstructured case, many other useful techniques developed

for 1D can be easily implemented in the framework of the quasi-1D approach. So far, we have
extended this approach to the cell-centered formulation [50]. The generalization to unstructured
meshes consisting of hexahedral and prismatic elements has been also carried out and firstly pre-
sented in [51].††

In the paper, we introduce a new EBR subfamily, namely, SEBR schemes. Thanks to the
minimization of unstructured stencil, the SEBR schemes allow to reduce the computational costs
of quasi-1D reconstruction in the 3D case approximately twice.

**

The full paper is being prepared.
††

The corresponding paper has been submitted.
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